Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release.

Free Radic Biol Med

Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, the State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Published: July 2017

Aim: As the global population has reached 7 billion and the baby boom generation reaches old age, thrombosis has become the major contributor to the global disease burden. It has been reported that, in moderate doses, beer may protect against thrombosis. Xanthohumol (XN), an antioxidant, is found at high concentrations in hop cones (Humulus lupulus L.) and is a common ingredient of beer. Here, the aim of the present work was to investigate the effects of XN on antithrombotic and antiplatelet activities, and study its mechanism.

Approach And Results: Using ferric chloride-induced carotid artery injury, inferior vena cava ligation model, and platelet function tests, we demonstrated that XN uniquely prevents both venous and arterial thrombosis by inhibiting platelet activation. Interestingly, in tail bleeding time studies, XN did not increase bleeding risk, which is recognized as a major limitation of current antithrombotic therapies. We also demonstrated that XN induces Sirt1 expression and thereby decreases reactive oxygen species (ROS) overload, prevents mitochondrial dysfunction, and reduces activated platelet-induced mitochondrial hyperpolarization, respiratory disorders, and associated membrane damage at low concentrations. In mitochondrial function assays designed to detect amounts of extracellular mitochondrial DNA (mtDNA), we found that XN prevents mtDNA release, which induces platelet activation in a DC-SIGN-dependent manner.

Conclusions: XN exemplifies a promising new class of antiplatelet agents that are highly effective at inhibiting platelet activation by decreasing ROS accumulation and platelet mtDNA release without incurring a bleeding risk. This study has also provided novel insights into mechanisms of thrombotic diseases with possible therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508526PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2017.02.018DOI Listing

Publication Analysis

Top Keywords

platelet activation
16
bleeding risk
12
inhibiting platelet
12
mtdna release
12
humulus lupulus
8
platelet
6
xanthohumol isolated
4
isolated humulus
4
prevents
4
lupulus prevents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!