Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

Comp Biochem Physiol C Toxicol Pharmacol

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy. Electronic address:

Published: September 2017

The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2017.02.002DOI Listing

Publication Analysis

Top Keywords

sea urchin
24
cuo nps
16
urchin embryos
16
neurotransmission skeletogenesis
8
skeletogenesis sea
8
urchin arbacia
8
arbacia lixula
8
copper oxide
8
oxide nanoparticles
8
observed sea
8

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

On Oscillations in the External Electrical Potential of Sea Urchins.

ACS Omega

January 2025

Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.

Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.

View Article and Find Full Text PDF

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

Echinoderms, a diverse group of marine invertebrates including starfish, sea urchins, and sea cucumbers, have been recognized as prolific sources of structurally diverse natural products. In the past five years, remarkable progress has been made in the isolation, structural elucidation, and pharmacological assessment of these bioactive compounds. These metabolites, including polysaccharides, triterpenoids, steroids, and peptides, demonstrate potent bioactivities such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects, providing valuable insights and scaffolds for drug discovery.

View Article and Find Full Text PDF

How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation.

Mar Drugs

December 2024

CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!