MicroRNA-498 plays a crucial role in progression of many carcinomas. The signaling pathways by which miR-498 modulates carcinogenesis are still unknown. Also, miR-498-associated molecular pathogenesis has never been studied in esophageal squamous cell carcinoma (ESCC). Herein, we aimed to examine the expression and functional roles of miR-498 in ESCC as well as its influences on the clinicopathological features in patients with ESCC. Expression of miR-498 was investigated in 93 ESCC tissues and 5 ESCC cell lines using quantitative real-time polymerase chain reaction. In vitro effects of miR-498 on cellular process were studied followed by overexpression of miR-498. Western blot and immunofluorescence techniques were used to identify the interacting targets for miR-498 in ESCC. miR-498 expression was significantly reduced in ESCC when compared with the nonneoplastic esophageal tissues (P<.05). Patients with low miR-498 expression showed different histological grading of cancer and survival rates when compared with the patients with high miR-498 expression. Overexpression of miR-498 in ESCC cell lines induced remarkable reductions of cell proliferation, barrier penetration, and colony formation when compared with control and wild-type counterparts. Also, miR-498 activated the FOXO1/KLF6 transcriptional axis in ESCC. In addition, miR-498 overexpression increased p21 protein expression and led to reduced cancer cell growth. To conclude, reduced expression of miR-498 in ESCC and in vitro analysis have confirmed the tumor suppressor properties of miR-498 by modulating the FOXO1/KLF6 signaling pathway. The changes in miR-498 expression may have impacts on the clinical pathological parameters of ESCC as well as in the management of the patients with ESCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humpath.2017.01.014 | DOI Listing |
World J Oncol
December 2024
Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
Background: The effectiveness of immune checkpoint therapy highlights the need to understand abnormal programmed cell death protein-1 (PD-1) expression in nasopharyngeal carcinoma (NPC), especially when treatments fail, or resistance develops. Interferon gamma (IFN-γ) signaling is crucial for regulating programmed cell death-ligand 1 (PD-L1) expression. Our study focuses on interferon gamma receptor 2 (IFNGR2), an essential part of the IFN-γ pathway, and its impact on malignant traits in NPC.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
May 2024
Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
LncRNA PRR34-AS1 overexpression promotes the proliferation and invasion of hepatocellular carcinoma (HCC) cells, but whether it affects HCC energy metabolism remains unclear. Mitochondrial division and glycolytic reprogramming play important roles in tumor development. In this study, the differential expression of PRR34-AS1 is explored via TCGA analysis, and higher levels of PRR34-AS1 are detected in patients with liver cancer than in healthy individuals.
View Article and Find Full Text PDFArch Med Res
January 2024
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India. Electronic address:
Background: Gestational hypertension (GH) is a severe complication that occurs after 20 weeks of pregnancy; however, its molecular mechanisms are not yet fully understood.
Objective: Through this case-control discovery phase study, we aimed to find disease-specific candidate placental microRNAs (miRNAs) and metabolite markers for differentiating GH by integrating next-generation sequencing and metabolomics multi-omics analysis of placenta. Using small RNA sequencing and metabolomics of placental tissues of healthy pregnant (HP, n = 24) and GH subjects (n = 20), the transcriptome and metabolome were characterized in both groups.
Front Oncol
October 2023
College of Laboratory Medicine, Jilin Medical University, Jilin, China.
FOXO3a is a protein of the forkhead box family that inhibits tumour cell growth. One of the regulatory modes affecting the role of FOXO3a is microRNA targeting and degradation of its mRNA expression, and conversely, aberrant expression of FOXO3a as a transcription factor also influences microRNA levels. We summarized the results of the regulatory interactions of twenty-five microRNAs with FOXO3a in five types of malignant tumours and found that dual microRNAs synergize with FOXO3a to inhibit breast cancer cell growth including two groups; Three individual microRNAs collaborated with FOXO3a to restrain hepatocellular carcinoma progression; Twelve individual microRNAs antagonized FOXO3a to promote the development of a single tumour cell, respectively; and five microRNAs antagonized FOXO3a to contribute to the progression of more than two types of tumours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!