Tumor budding (TB) in colorectal carcinoma (CRC) is related to epithelial-mesenchymal transition and has been recently characterized as an indicator of poor prognosis along with lymphovascular tumor emboli, perineural invasion, and an infiltrative growth pattern. Mutations in the genes of the Ras-mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase pathways are associated with epithelial-mesenchymal transition and an aggressive CRC phenotype and have been used in patient stratification for anti-epidermal growth factor receptor therapies; however, the impact of these mutations on CRC morphology and behavior remains unclear. In this study, using a multigene panel, we detected KRAS, NRAS, BRAF, PIK3CA, TP53, and POLE mutations in 90 CRCs and investigated their associations with clinicopathological parameters, including TB. Our results showed that 21 of 34 tumors with high-grade TB had KRAS mutations (P=.001) and KRAS G12D and PIK3CA exon 9 variants were significantly associated with high-grade TB (P=.002 and .006, respectively); furthermore, tumors with KRAS mutations in exons 3 and 4 tended to have lymphovascular tumor emboli and perineural invasion (P=.044 and .049, respectively). PIK3CA exon 9 mutations indicated a tendency for shorter disease-free survival (P=.030), whereas BRAF mutations were associated with extracellular mucin deposition (P=.016). Our study revealed a correlation of KRAS mutations with high-grade TB, an association of certain KRAS and PIK3CA variants with aggressive clinicopathological features, as well as a possible relationship between BRAF mutations and mucin production in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humpath.2017.01.010 | DOI Listing |
Front Med
January 2025
Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
SMARCA4-deficient non small cell lung cancer (SMARCA4-dNSCLC) has recently garnered increasing attention due to its high malignancy and poor prognosis. The literature suggests that in non small cell lung cancer (NSCLC), the loss of SMARCA4 frequently co-occurs with mutations in KRAS, KEAP1, and STK11 rather than in EGFR, ALK, and ROS1. Herein, we present the first documented case of SMARCA4-dNSCLC accompanied with rare mutations of EGFR exon 20 S768I and exon 18 G719X.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Zentalis Pharmaceuticals, Inc, San Diego, CA, United States.
KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.
View Article and Find Full Text PDFMol Cancer
January 2025
RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities.
View Article and Find Full Text PDFAAPS J
January 2025
Clinical Pharmacology Modeling and Simulation, Amgen, One Amgen Center Drive, Thousand Oaks, CA, 91320-0777, USA.
Sotorasib is a novel KRAS inhibitor that has shown robust efficacy, safety, and tolerability in patients with KRAS mutation. The objectives of the population pharmacokinetic (PK) analysis were to characterize sotorasib population PK in healthy subjects and patients with advanced solid tumors with KRAS mutation from 6 clinical studies, evaluate the effects of intrinsic and extrinsic factors on PK parameters, and perform simulations to further assess the impact of identified covariates on sotorasib exposures. A two-compartment disposition model with three transit compartments for absorption and time-dependent clearance and bioavailability well described sotorasib PK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!