Pesticide stress on plants negatively affects parasitoid fitness through a bypass of their phytophage hosts.

Ecotoxicology

Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands.

Published: April 2017

Pesticides taken up by plants from the soil or interstitial (pore) water can cascade to higher trophic levels, which are expected to be more affected due to cumulative bottom-up effects. Knowledge about the impact of indirect exposure to pesticides on non-target terrestrial trophic chains, however, is still lacking. Therefore, we examined the direct and indirect effects of three concentrations of the herbicide 2,6-dichlorobenzonitrile (DCBN) and an insecticide with a similar molecular structure (1,4-dichlorobenzene, DCB) on the fitness traits of a tritrophic system: the wheat plant Triticum aestivum, the aphid Sitobion avenae and its specialist parasitoid Aphidius rhopalosiphi. To mimic exposure via interstitial water the toxicants were added to the growth medium of the plant. Passive dosing between the medium and a silicon layer was used to achieve constant exposure of the poorly soluble pesticides. Wheat plants exposed to both pesticides grew smaller and had reduced biomasses. Negative effects on the reproductive rate, biomass and the number of aphids were only observable at the highest concentration of DCBN. Overall parasitism rate decreased when exposed to both pesticides and parasitoid attack rates decreased at lower concentrations of DCBN and at the highest DCB concentration. The parasitoid sex ratio was extremely male-biased in the presence of DCBN. Our results demonstrate that pesticides can alter the performance of higher trophic levels by sublethal effects, through a bypass of the second trophic level. In addition, the novel test system used was suitable for detecting such carryover effects on non-target organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-017-1771-xDOI Listing

Publication Analysis

Top Keywords

higher trophic
8
trophic levels
8
exposed pesticides
8
pesticides
6
effects
5
pesticide stress
4
stress plants
4
plants negatively
4
parasitoid
4
negatively parasitoid
4

Similar Publications

In Situ Phytoremediation of Mine Tailings with High Concentrations of Cadmium and Lead Using (Sapindaceae).

Plants (Basel)

December 2024

Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.

The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.

View Article and Find Full Text PDF

Heavy metal pollution has complex impacts on terrestrial ecosystems, affecting biodiversity, trophic relationships, species health, and the quality of natural resources. This study aims to validate a non-invasive method for detecting heavy metals (Cd, As, Zn, Cu, Cr) in micromammalian prey, which constitute the primary diet of the common genet (), a mesocarnivore sensitive to habitat degradation. By focusing on prey remains (hair and bones) rather than entire fecal samples, this approach leverages the genet's selective feeding habits to assess the bioaccumulation of contaminants in its preferred prey.

View Article and Find Full Text PDF

Variation in the diet composition and weight-length relationship of small characids in urbanized and forested streams.

J Fish Biol

January 2025

Laboratório de Biologia Aquática Aplicada, Universidade Federal da Grande Dourados, Dourados, Brazil.

The diet of indicator fish species plays a crucial role in assessing ecosystem health. This study evaluated streams with and without urban influences, focusing on abiotic parameters and the trophic ecology of Psalidodon fasciatus and Piabina argentea. Forested streams exhibited higher redox potential, dissolved oxygen, transparency, and depth, whereas urban streams had higher temperatures, greater widths, and increased levels of total dissolved solids, conductivity, total coliforms, and thermotolerant coliforms.

View Article and Find Full Text PDF

Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!