Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures.

Methods Mol Biol

Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, MC 5483, Palo Alto, CA, 94304, USA.

Published: February 2018

Protein glycosylation is considered to be one of the most abundant post-translational modifications and is recognized for playing key roles in cellular functions. Aberrant N-linked glycosylation has been associated with several human diseases and has prompted the development and constant improvement of analytical tools to separate, characterize, and quantify glycoproteins in complex mixtures extracted from various biological samples (such as blood and tissue). Lectins, or carbohydrate-binding proteins, have been used as valuable tools for enriching for glycoproteins and selecting for specific types of glycosylation. Herein a method using multidimensional intact protein fractionation and LC-MS/MS analysis is described. Immunodepletion is used to remove highly abundant proteins from human plasma, followed by glycoform separation using multi-lectin affinity chromatography, in which specific lectins are chosen to capture and elute specific types of glycosylation. Reversed-phase chromatography prior to digestion is used for further fractionation, allowing for an increased number of protein identifications of moderate- to low-abundant proteins detectable in plasma. This method also incorporates isotopic labeling during alkylation for relative quantitation between two samples (such as a case and control). A bottom-up, tandem mass spectrometry-based proteomics approach is used for protein identification and quantitation, and allows for screening glycoform-specific changes across hundreds of plasma proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6747-6_9DOI Listing

Publication Analysis

Top Keywords

multi-lectin affinity
8
affinity chromatography
8
identification quantitation
8
intact protein
8
specific types
8
types glycosylation
8
protein
5
chromatography separation
4
separation identification
4
quantitation intact
4

Similar Publications

The glycosylation of proteins is one of the most common post-translational modifications (PTMs) and plays important regulatory functions in diverse biological processes such as protein stability or cell signaling. Accordingly, glycoproteins are also a consistent part of the human tear film proteome, maintaining the proper function of the ocular surface and forming the first defense barrier of the ocular immune system. Irregularities in the glycoproteomic composition of tear film might promote the development of chronic eye diseases, indicating glycoproteins as a valuable source for biomarker discovery or drug target identification.

View Article and Find Full Text PDF

Glycoproteomics Landscape of Asymptomatic and Symptomatic Human Alzheimer's Disease Brain.

Mol Cell Proteomics

December 2022

Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Molecular changes in the brain of individuals afflicted with Alzheimer's disease (AD) are an intense area of study. Little is known about the role of protein abundance and posttranslational modifications in AD progression and treatment, in particular large-scale intact N-linked glycoproteomics analysis. To elucidate the N-glycoproteome landscape, we developed an approach based on multi-lectin affinity enrichment, hydrophilic interaction chromatography, and LC-MS-based glycoproteomics.

View Article and Find Full Text PDF

Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics.

View Article and Find Full Text PDF

The system-wide site-specific analysis of intact glycopeptides is crucial for understanding the exact functional relevance of protein glycosylation. A dedicated workflow with the capability to simultaneously characterize and quantify intact glycopeptides in a site-specific and high-throughput manner is essential to reveal specific glycosylation alteration patterns in complex biological systems. In this study, an enhanced, dedicated, large-scale site-specific quantitative N-glycoproteomics workflow has been established, which includes improved specific extraction of membrane-bound glycoproteins using the filter aided sample preparation (FASP) method, enhanced enrichment of N-glycopeptides using sequential hydrophilic interaction liquid chromatography (HILIC) and multi-lectin affinity (MLA) enrichment, site-specific N-glycopeptide characterization enabled by EThcD, relative quantitation utilizing isobaric N,N-dimethyl leucine (DiLeu) tags and automated FDR-based large-scale data analysis by Byonic.

View Article and Find Full Text PDF

Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures.

Methods Mol Biol

February 2018

Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, MC 5483, Palo Alto, CA, 94304, USA.

Protein glycosylation is considered to be one of the most abundant post-translational modifications and is recognized for playing key roles in cellular functions. Aberrant N-linked glycosylation has been associated with several human diseases and has prompted the development and constant improvement of analytical tools to separate, characterize, and quantify glycoproteins in complex mixtures extracted from various biological samples (such as blood and tissue). Lectins, or carbohydrate-binding proteins, have been used as valuable tools for enriching for glycoproteins and selecting for specific types of glycosylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!