Central nervous system consequences of viral infections are rare, but when they do occur, they are often serious and clinically challenging to manage. Our awareness of the perils of neuroinvasion by viruses is growing: the recently appreciated impact of Ebola and Zika virus infections on CNS integrity, decreases in vaccination coverage for potentially neurotropic viruses such as measles, and increased neurovirulence of some influenza strains collectively highlight the need for a better understanding of the viral-neural interaction. Defining these interactions and how they result in neuropathogenesis is paramount for the development of better clinical strategies, especially given the limited treatment options that are available due to the unique physiology of the brain that limits migration of blood-borne molecules into the CNS parenchyma. In this perspective, we discuss some unique aspects of neuronal viral infections and immune-mediated control that impact the pathogenic outcomes of these infections. Further, we draw attention to an often overlooked aspect of neuropathogenesis research: that lack of overt disease, which is often equated with survival post-infection, likely only scratches the surface of the myriad ways by which neurotropic infections can impair CNS function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474346 | PMC |
http://dx.doi.org/10.1016/j.jneuroim.2017.01.020 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFSci Rep
December 2024
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, 11944, USA.
For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFSci Rep
December 2024
Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco.
Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, GC University, Lahore, Pakistan.
In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!