Background And Objectives: Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Analyzing human gait serves to be useful in studies aiming at early recognition of the disease. In this paper we perform a comparative analysis of various nature inspired algorithms to select optimal features/variables required for aiding in the classification of affected patients from the rest.

Methods: For the experiments, we use a real life dataset of 166 people containing both healthy controls and affected people. Following the optimal feature selection process, the dataset is then classified using a neural network.

Results And Conclusions: The experimental results show Binary Bat Algorithm outperformed traditional techniques like Particle Swarm Optimization (PSO), Genetic Algorithm and Modified Cuckoo Search Algorithm with a competitive recognition rate on the dataset of selected features. We compare this through different criteria like cross-validated accuracies, true positive rates, false positive rates, positive predicted values and negative predicted values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2016.07.029DOI Listing

Publication Analysis

Top Keywords

feature selection
8
parkinson's disease
8
human gait
8
positive rates
8
predicted values
8
survey nature-inspired
4
nature-inspired algorithms
4
algorithms feature
4
selection identify
4
identify parkinson's
4

Similar Publications

We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

Development and validation of a radiomics nomogram for preoperative prediction of BRAF mutation status in adult patients with craniopharyngioma.

Neurosurg Rev

December 2024

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.

Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.

View Article and Find Full Text PDF

Objectives: To comprehensively summarize the characteristics of magnetic resonance imaging (MRI) findings of uterine adenosarcoma through a systematic review and case series analysis.

Methods: A literature search was conducted in MEDLINE, Scopus, and Embase databases on June 3, 2024. In total, 25 cases from 23 articles were selected, and five cases from the authors' institution were included.

View Article and Find Full Text PDF

The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!