Background: Photodynamic therapy (PDT) has proven to be a promising alternative to current cancer treatments, especially if combined with conventional approaches. The technique is based on the administration of a non-toxic photosensitizing agent to the patient with subsequent localized exposure to a light source of a specific wavelength, resulting in a cytotoxic response to oxidative damage. The present study intended to evaluate in vitro the type of induced death and the genotoxic and mutagenic effects of PDT alone and associated with cisplatin.
Methods: We used the cell lines SiHa (ATCC® HTB35™), C-33 A (ATCC® HTB31™) and HaCaT cells, all available at Dr. Christiane Soares' Lab. Photosensitizers were Photogem (PGPDT) and methylene blue (MBPDT), alone or combined with cisplatin. Cell death was accessed through Hoechst and Propidium iodide staining and caspase-3 activity. Genotoxicity and mutagenicity were accessed via flow cytometry with anti-gama-H2AX and micronuclei assay, respectively. Data were analyzed by one-way ANOVA with Tukey's posthoc test.
Results: Both MBPDT and PGPDT induced caspase-independent death, but MBPDT induced the morphology of typical necrosis, while PGPDT induced morphological alterations most similar to apoptosis. Cisplatin predominantly induced apoptosis, and the combined therapy induced variable rates of apoptosis- or necrosis-like phenotypes according to the cell line, but the percentage of dead cells was always higher than with monotherapies. MBPDT, either as monotherapy or in combination with cisplatin, was the unique therapy to induce significant damage to DNA (double strand breaks) in the three cell lines evaluated. However, there was no mutagenic potential observed for the damage induced by MBPDT, since the few cells that survived the treatment have lost their clonogenic capacity.
Conclusions: Our results elicit the potential of combined therapy in diminishing the toxicity of antineoplastic drugs. Ultimately, photodynamic therapy mediated by either methylene blue or Photogem as monotherapy or in combination with cisplatin has low mutagenic potential, which supports its safe use in clinical practice for the treatment of cervical cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303234 | PMC |
http://dx.doi.org/10.1186/s12885-017-3075-1 | DOI Listing |
Nat Commun
January 2025
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistr, 410082, Changsha, CHINA.
Immunotherapy is a promising cancer treatment, but its application is hindered by tumors' low immunogenicity and the difficulty of immune cell infiltration. Here, to address above issues and achieve targeted tumor treatment, we designed the first activated small molecule photosensitizer immune-prodrug HDIM based on pyroptosis, and proposed a self-amplified immune therapy strategy (SITS) for enhanced tumor therapy. HDIMcan be specifically activated by the tumor hypoxiaand then simultaneously initiate immuno-therapy and photodynamic therapy (PDT)-induced pyroptosis with NIR laser irradiation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China. Electronic address:
Bacterial infections impede skin wound healing, and antibacterial hydrogels have garnered significant attention in the field of wound care due to their combined therapeutic effects. In this study, an intelligent, responsive AC-Gel@Cur-Au hydrogel was developed using temperature-sensitive agarose and pH-responsive chitosan as the structural framework, infused with Gel@Cur and AuNR. The AC-Gel@Cur-Au hydrogels demonstrated excellent mechanical properties, swelling capacity, tissue adhesion, and biodegradability.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China. Electronic address:
Oral squamous cell carcinoma (OSCC) is the most common subtype of head and neck malignancies, characterized by a five-year survival rate that remains persistently below 50%, indicative of limited progress in therapeutic interventions. There is an urgent imperative to develop innovative therapeutic strategies, warranting the investigation of advanced treatment modalities. Nanocarriers offer a promising avenue by significantly enhancing drug properties and pharmacokinetics.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. Electronic address:
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!