Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several feature extraction approaches for QSPR modelling in Cheminformatics are discussed in this paper. In particular, this work is focused on the use of these strategies for predicting mechanical properties, which are relevant for the design of polymeric materials. The methodology analysed in this study employs a feature learning method that uses a quantification process of 2D structural characterization of materials with the autoencoder method. Alternative QSPR models inferred for tensile strength at break (a well-known mechanical property of polymers) are presented. These alternative models are contrasted to QSPR models obtained by feature selection technique by using accuracy measures and a visual analytic tool. The results show evidence about the benefits of combining feature learning approaches with feature selection methods for the design of QSPR models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2390/biecoll-jib-2016-286 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!