This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D values above 4. Renewal of the medium resulted in linear sorption isotherms. D values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D. Log D values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343551PMC
http://dx.doi.org/10.1021/acs.est.6b05662DOI Listing

Publication Analysis

Top Keywords

cationic surfactants
12
sorption isotherms
8
log values
8
sorption
4
sorption cationic
4
surfactants artificial
4
artificial cell
4
membranes
4
cell membranes
4
membranes comparing
4

Similar Publications

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.

View Article and Find Full Text PDF

A range of NMR techniques, including diffusion ordered spectroscopy (DOSY) were used to characterise complex micelles formed by the anti-microbial cationic surfactant cetylpyridium chloride and to quantify the degree of interaction between cetylpyridium chloride and hydroxyethyl cellulose in a variety of commercially relevant formulations as a model for the disk retention assay. This NMR-derived binding information was then compared with the results of formulation analysis by traditional disk retention assay (DRA) and anti-microbial activity assays to assess the suitability of these NMR techniques for the rapid identification of formulation components that could augment or retard antimicrobial activity DRA. NMR showed a strong ability to predict anti-microbial activity for a diverse range of formulations containing cetylpyridinium chloride (CPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!