18.216.141.121=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=28187234&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490818.216.141.121=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=sweet+potato&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490818.216.141.121=18.2
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a6e0d3b9a049c0cfbb4&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 The research and implementation continuum of biofortified sweet potato and maize in Africa. | LitMetric

The enhancement of sweet potato and maize with provitamin A carotenoids has been part of HarvestPlus's research continuum since the formation of the biofortification project. This review includes case studies of biofortification strategies used for sweet potato in Uganda and orange maize in Zambia. The current status of the science and release of biofortified varieties was reviewed by three scientists who were part of the HarvestPlus program for more than a decade with input from a scientist who experienced orange maize dissemination in Zambia. High β-carotene varieties of sweet potato were introduced into South Africa and Mozambique, and efficacy and effectiveness studies, respectively, showed promise to improve vitamin A status, followed by dissemination efforts in Uganda. A randomized, controlled effectiveness trial tested extension models to promote sweet potato and assessed vitamin A intake among Ugandans. Orange maize breeding was initially a challenge, but considering that the carotenoid biosynthetic pathway was present in maize germplasm, breeders quickly bred higher amounts of provitamin A into the maize that was ultimately released in Zambia. Initial resistance occurred because orange maize was associated with yellow maize, which had negative connotations associated with food aid and animal feed, and consumers preferred white maize. Currently, both orange crops are available on the market.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.13315DOI Listing

Publication Analysis

Top Keywords

sweet potato
20
orange maize
16
maize
10
potato maize
8
sweet
5
potato
5
orange
5
implementation continuum
4
continuum biofortified
4
biofortified sweet
4

Similar Publications

Effects of Purple-Fleshed Sweet Potato Lyophilized Powder on the Physicochemical Properties, Lactic Acid Bacteria Viability, Microstructure, and Textural Properties of Stirred Yogurt.

Foods

January 2025

Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro 23890-000, Brazil.

This study proposes the use of lyophilized powder of purple-fleshed sweet potato (LP) as a new multifunctional ingredient to improve the identity and quality parameters of stirred yogurts. The physical and chemical properties, color, monomeric anthocyanin content, lactic acid bacteria viability, water retention capacity, microstructure, and texture were evaluated for yogurts enriched with LP at the levels of 2% (YLP2), 4% (YLP4), and 6% (YPL6), stored for 30 days under refrigeration (4 °C). The results indicated that LP provided different intensities and shades of pink coloration to yogurt, in addition to increasing ( < 0.

View Article and Find Full Text PDF

Development of edible films based on sweet potato (Ipomoea batatas) starch and their application in candy packaging.

Int J Biol Macromol

January 2025

Department Food Engineering, Universidad de Córdoba, Montería, Colombia. Electronic address:

Recent studies have focused on the generation of biomaterials from natural sources, highlighting the use of starch from different sources to obtain edible films and coatings. In this study, edible films were developed from sweet potato starch, and their potential use in candy packaging was evaluated. Films were prepared by the casting method, and the effects of sweet potato starch (3 %-5 % w/w), glycerol (0.

View Article and Find Full Text PDF

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!