Due to their capacity to self-renew, proliferate and generate multi-lineage cells, adult-derived stem cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative diseases such as diabetes, heart failure, Alzheimer's disease and others. However, these subsets of cells can be isolated from different niches, each with differing potential for therapeutic applications. The stromal vascular fraction (SVF), a stem cell enriched and adipose-derived cell population, has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete paracrine factors that accelerate endogenous repair, ease of accessibility and lack of identified major adverse effects. Thus, one can easily understand the rush to employ adipose-derived SVF to treat human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal, standardized clinical procedures are underway. Here, we will provide an overview of the current knowledge driving this phenomenon, its regulatory issues and existing studies, and propose potential unmapped applications. Stem Cells Translational Medicine 2017;6:1096-1108.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388064 | PMC |
http://dx.doi.org/10.1002/sctm.16-0337 | DOI Listing |
Int J Mol Sci
January 2025
Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).
View Article and Find Full Text PDFBiology (Basel)
January 2025
Institute for Transfusion Medicine, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
Intravenously transplanted mesenchymal stromal cells (MSCs) have been shown to interact with endothelial cells and to migrate to tissues. However, intracellular signals regulating MSC migration are still incompletely understood. Here, we analyzed the role of Rap1 GTPase in the migration of human bone marrow-derived MSCs in vitro and in short-term homing in mice in vivo.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Faculty of Medicine, Hitit University, Çorum, Turkey.
Purpose: To examine the detailed vascular and morphological characteristics of the choroidal tissue in subjects with myopia.
Methods: A total of 111 subjects with myopia were included in the study. The study was conducted in three groups according to spherical equivalent(SE).
Am J Physiol Renal Physiol
January 2025
Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Over the last 50 years, contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells present antigenic peptides to T cells promoting inflammation and the elevation of blood pressure.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
Background: Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!