Aims: Thrombocytopenia is among the most important adverse effects of linezolid treatment. Linezolid-induced thrombocytopenia incidence varies considerably but has been associated with impaired renal function. We investigated the pharmacodynamic mechanism (myelosuppression or enhanced platelet destruction) and the role of impaired renal function (RF) in the development of thrombocytopenia.
Methods: The pharmacokinetics of linezolid were described with a two-compartment distribution model with first-order absorption and elimination. RF was calculated using the expected creatinine clearance. The decrease platelets by linezolid exposure was assumed to occur by one of two mechanisms: inhibition of the formation of platelets (PDI) or stimulation of the elimination (PDS) of platelets.
Results: About 50% of elimination was found to be explained by renal clearance (normal RF). The population mean estimated plasma protein binding of linezolid was 18% [95% confidence interval (CI) 16%, 20%] and was independent of the observed concentrations. The estimated mixture model fraction of patients with a platelet count decreased due to PDI was 0.97 (95% CI 0.87, 1.00), so the fraction due to PDS was 0.03. RF had no influence on linezolid pharmacodynamics.
Conclusion: We have described the influence of weight, renal function, age and plasma protein binding on the pharmacokinetics of linezolid. This combined pharmacokinetic, pharmacodynamic and turnover model identified that the most common mechanism of thrombocytopenia associated with linezolid is PDI. Impaired RF increases thrombocytopenia by a pharmacokinetic mechanism. The linezolid dose should be reduced in RF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510085 | PMC |
http://dx.doi.org/10.1111/bcp.13262 | DOI Listing |
Stem Cell Res Ther
January 2025
Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA.
Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.
Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.
J Nephrol
January 2025
School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, 54907, Republic of Korea.
Background: The effect of lowering uric acid levels on renal function in patients with diabetic kidney disease remains unclear. Previous randomized controlled trials (RCTs) have reported conflicting results regarding the effects of xanthine oxidase inhibitors on renal function. This study aimed to examine the renoprotective effects of xanthine oxidase inhibitors (febuxostat and topiroxostat) in patients with diabetic kidney disease.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nutrition, School of Public Health, Zabol University of Medical Sciences, Bagheri St., Shahid Rajaei St., Zabol, 9861615881, Iran.
Knee osteoarthritis (KOA) is a prevalent chronic condition characterized by inflammation and oxidative stress, particularly in individuals over 40. Dietary factors, specifically dietary acid load (DAL), may influence these pathological processes. However, the relationship between DAL and inflammatory markers, oxidative stress, and clinical features in patients with KOA remains unexplored.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!