Objective: The objective of this paper was to outline an explanatory framework for understanding effects of cognitive load on driving performance and to review the existing experimental literature in the light of this framework.

Background: Although there is general consensus that taking the eyes off the forward roadway significantly impairs most aspects of driving, the effects of primarily cognitively loading tasks on driving performance are not well understood.

Method: Based on existing models of driver attention, an explanatory framework was outlined. This framework can be summarized in terms of the cognitive control hypothesis: Cognitive load selectively impairs driving subtasks that rely on cognitive control but leaves automatic performance unaffected. An extensive literature review was conducted wherein existing results were reinterpreted based on the proposed framework.

Results: It was demonstrated that the general pattern of experimental results reported in the literature aligns well with the cognitive control hypothesis and that several apparent discrepancies between studies can be reconciled based on the proposed framework. More specifically, performance on nonpracticed or inherently variable tasks, relying on cognitive control, is consistently impaired by cognitive load, whereas the performance on automatized (well-practiced and consistently mapped) tasks is unaffected and sometimes even improved.

Conclusion: Effects of cognitive load on driving are strongly selective and task dependent.

Application: The present results have important implications for the generalization of results obtained from experimental studies to real-world driving. The proposed framework can also serve to guide future research on the potential causal role of cognitive load in real-world crashes.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0018720817690639DOI Listing

Publication Analysis

Top Keywords

cognitive load
24
cognitive control
20
effects cognitive
12
load driving
12
driving performance
12
control hypothesis
12
cognitive
10
explanatory framework
8
based proposed
8
proposed framework
8

Similar Publications

Assessment of drivers' visual search patterns and cognitive load during driving in curved tunnels.

Traffic Inj Prev

January 2025

School of Intelligent Transportation and Engineering, Guangzhou Maritime University, Guangzhou, China.

Objective: The objective of this study was to assess drivers' visual search patterns and cognitive load during driving in curved tunnels. Specifically, we aimed to investigate how different curved tunnel geometries (tunnel radii, turning directions) and zones (entrance, middle, exit) influence drivers' saccadic eye movements. This understanding can inform the development of safer tunnel designs and driving guidelines.

View Article and Find Full Text PDF

. Musculoskeletal disorders (MSDs) represent a prevalent global occupational health concern, primarily associated with high biomechanical solicitations, mental workload and work pace. Although cobots have shown promise in reducing risks of MSDs, a question of interest still persists as to how the pace in hybrid human-machine collaboration will affect the operator, in terms of both physical and cognitive health and the production.

View Article and Find Full Text PDF

Background: Although previous studies have shown that cognitive decline in Alzheimer's disease (AD) is associated with various risk factors, they primarily focused on late-onset AD (LOAD).

Objective: We aim to evaluate the differential impact of risk factors on the cognitive decline between early-onset AD (EOAD, onset < 65 years) and LOAD (onset 65 years) and explore the longitudinal effect of Apolipoprotein E allele 4 ( ε4) on cortical atrophy in both cohorts.

Methods: Using data from 212 EOAD and 1101 LOAD participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI), we conducted multivariable mixed-effect models to evaluate the impact of ε4, education, hypertension, diabetes, dyslipidemia, and body mass index on cognitive performance.

View Article and Find Full Text PDF

Background: Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque.

Objectives: To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!