We present the synthesis, structure, magnetic properties, as well as the Mössbauer and electron paramagnetic resonance studies of a ring-shaped [FeLn(Htea)(μ-N)(N)(piv)] (Ln = Y 1, Gd 2, Tb 3, Dy 4, Ho 5, Er, 6) coordination cluster. The Dy, Tb, and Ho analogues show blocking of the magnetization at low temperatures without applied fields. The anisotropy of the 3d ion and the exchange interaction between 3d and 4f ions in FeLn complexes are unambiguously determined by high-field/high-frequency electron paramagnetic resonance measurements at low temperature. Ferromagnetic exchange interaction J is found which decreases upon variation of the Ln ions to larger atomic numbers. This dependence is similar to the behavior shown in the effective barrier values of complexes 3-5. Further information about the anisotropy of the Ln ions was gathered with Fe Mössbauer spectroscopy, and the combination of these methods provides detailed information regarding the electronic structure of these complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b02682DOI Listing

Publication Analysis

Top Keywords

electron paramagnetic
12
paramagnetic resonance
12
electronic structure
8
high-field/high-frequency electron
8
exchange interaction
8
three-pronged attack
4
attack investigate
4
investigate electronic
4
structure family
4
family ferromagnetic
4

Similar Publications

Globin X is a newly discovered member of the globin family, while its structure and function are not fully understood. In this study, we performed protein modelling studies using Alphafold3 and molecular dynamics simulations, which suggested that the protein adopts a typical globin fold, with the formation of a potential disulfide bond of Cys65 and Cys141. To elucidate the role of this unique disulfide in protein structure and stability, we constructed a double mutant of C65S/C141S by mutating the two cysteine residues to serine.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Loading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.

View Article and Find Full Text PDF

Light-induced electron spin qubit coherences in the purple bacteria reaction center protein.

Phys Chem Chem Phys

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!