Hydrogen sulfide (HS) is an important gaseous signaling molecule in neuro-modulation, anti-inflammatory, anti-oxidant and anti-hypertensive effects. The paraventricular nucleus (PVN) is a major integrative nucleus in regulating BP and SNA. The aim of this study is to explore whether endogenous or exogenous HS changed by hydroxylamine hydrochloride (HA) or GYY4137 infused in the PVN affects RSNA and MAP by regulating oxidative stress or the balance between pro-inflammatory cytokines (PICs) and anti-inflammatory cytokines in high salt-induced hypertensive rats. Male Dahl rats were fed by high-salt or normal-salt diet. At the end of the 4th week, GYY4137, HA or vehicle was microinjected into bilateral PVN for 6 weeks. The levels of MAP, HR, plasma norepinephrine (NE), reactive oxygen species (ROS), NOX2, NOX4 and IL-1β were increased significantly in high salt-induced hypertensive rats. Higher levels of these parameters were detected in the group treated by HA, but lower levels in the GYY4137 group. The trends of HS, CBS, IL-10 and Cu/Zn SOD were opposite to the parameters described above. These findings suggest that endogenous or exogenous HS in the PVN attenuates sympathetic activity and hypertensive response, which are partly due to decrease of ROS and PICs within the PVN in high salt-induced hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2017.02.004 | DOI Listing |
Molecules
December 2024
Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasourg, Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, 1 Rue Eugène Boeckel, F-67000 Strasbourg, France.
Specific ion effects on the structure and function of many biological macromolecules, their associations, colloidal systems, interfacial phenomena, and even "simple" electrolytes solutions are ubiquitous. The molecular origin of such phenomena is discussed either as a salt-induced change of the water structure (the hydrogen bond network) or some specific (solvent mediated) interactions of one or both of the ions of the electrolyte with the investigated co-solute (macromolecules or colloidal particles). The case of hydrogels is of high interest but is only marginally explored with respect to other physico-chemical systems because they are formed through the interactions of gelling agents in the presence of water and the added electrolyte.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Hypertension remains a global health challenge due to its high prevalence and association with premature morbidity and mortality. Aldosterone, a mineralocorticoid hormone, and its receptor, the mineralocorticoid receptor (MR), are highly implicated in hypertension pathogenesis. Aldosterone synthase is the sole enzyme responsible for producing aldosterone in humans.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Department of Biology, Faculty of Sciences, Al-Baha University, Al-Baha 65729, Saudi Arabia.
Barley ( L.) is among the earliest crops to be cultivated and is also considered a crucial staple crop. Nevertheless, the negative effects of abiotic stress on both the quality and productivity of barley are significant.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
The use of Ca metal in battery technology is a promising approach owing to its high energy density and sustainability. However, the increased battery resistance during extended cycling significantly narrows its application range. This study aimed to improve the long-term stability of Ca deposition by employing a dual-salt strategy based on calcium monocarborane, Ca(CBH), which demonstrated favorable Ca deposition characteristics as a single-salt electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!