This paper describes the analysis of an AD plant that is novel in that it is located in an urban environment, built on a micro-scale, fed on food and catering waste, and operates as a purposeful system. The plant was built in 2013 and continues to operate to date, processing urban food waste and generating biogas for use in a community café. The plant was monitored for a period of 319days during 2014, during which the operational parameters, biological stability and energy requirements of the plant were assessed. The plant processed 4574kg of food waste during this time, producing 1008m of biogas at average 60.6% methane. The results showed that the plant was capable of stable operation despite large fluctuations in the rate and type of feed. Another innovative aspect of the plant was that it was equipped with a pre-digester tank and automated feeding, which reduced the effect of feedstock variations on the digestion process. Towards the end of the testing period, a rise in the concentration of volatile fatty acids and ammonia was detected in the digestate, indicating biological instability, and this was successfully remedied by adding trace elements. The energy balance and coefficient of performance (COP) of the system were calculated, which concluded that the system used 49% less heat energy by being housed in a greenhouse, achieved a net positive energy balance and potential COP of 3.16 and 5.55 based on electrical and heat energy, respectively. Greenhouse gas emissions analysis concluded that the most important contribution of the plant to the mitigation of greenhouse gases was the avoidance of on-site fossil fuel use, followed by the diversion of food waste from landfill and that the plant could result in carbon reduction of 2.95kg CO kWh electricity production or 0.741kg CO kg waste treated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2017.01.036DOI Listing

Publication Analysis

Top Keywords

food waste
12
plant
9
energy balance
8
heat energy
8
waste
6
energy
5
assessment micro-scale
4
micro-scale anaerobic
4
anaerobic digestion
4
digestion management
4

Similar Publications

Antibiotic resistance gene pollution in poultry farming environments and approaches for mitigation: A system review.

Poult Sci

January 2025

College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China. Electronic address:

Antibiotic resistance genes (ARG) pollution in poultry farming environments has become increasingly critical, primarily driven by the widespread use of antibiotics in animal husbandry. Prolonged antibiotic use has led to the emergence of ARGs and antibiotic-resistant bacteria, spreading via horizontal and vertical gene transfer. The complexity of ARG pollution in poultry farming arises from the unique farming practices, physiological characteristics of poultry, and manure management methods, with manure, wastewater, and air serving as significant vectors for ARG dissemination.

View Article and Find Full Text PDF

Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus.

J Hazard Mater

January 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots.

View Article and Find Full Text PDF

Towards circularity for agro-waste: Minimal soil hazards of olive pomace bioconverted frass by insect larvae as an organic fertilizer.

J Environ Manage

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

As global populations escalate and the demand for food and feed intensifies, the generation of agri-food waste is becoming an increasingly critical issue. Addressing this challenge is crucial for optimizing food production and advancing sustainable waste management practices. In this context, insects, including the Black Soldier Fly (BSF, Hermetia illucens), present opportunities for circularity through the bioconversion of organic waste.

View Article and Find Full Text PDF

Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.

View Article and Find Full Text PDF

Development of a Highly Nutritious Vegetable Beverage Based on Kurugua (Sicana odorifera) and Chia Oil (Salvia hispanica).

Plant Foods Hum Nutr

January 2025

Facultad de Ciencias Químicas, Dirección de Investigaciones, Universidad Nacional de Asunción, P.O. 1055, San Lorenzo, Paraguay.

Concerns over malnutrition, synthetic additives and post-harvest waste highlight the need for innovation in food technology, turning towards underutilized crops. Plant-based beverages offer sustainable dietary alternatives and the increasing demand for such products makes the exploration of native crops particularly relevant. This study focuses on the development of a beverage derived from the native South American fruit kurugua (Sicana odorifera), combined with chia oil (Salvia hispanica L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!