Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[H]-aspartate release. To investigate the putative intracellular signaling pathways implicated in the protective effect of folic acid, we used a PI3K inhibitor, LY294002, which abolished the protective effects of folic acid against glutamate-induced cell damage and D-[H] aspartate release. Moreover, hippocampal slices incubated with folic acid alone for 30 min presented increased phosphorylation of GSK-3β at Ser9, indicating an inhibition of the activity of this enzyme. Furthermore, folic acid in the presence of glutamate insult in hippocampal slices maintained for an additional period of 6 h in fresh culture medium without glutamate and/or folic acid induced phosphorylation of GSK-3β and β-catenin expression. In addition, glutamate-treated hippocampal slices showed increased iNOS expression that was reversed by folic acid. In conclusion, the results of this study show that the protective effect of folic acid against glutamate-induced excitotoxicity may involve the modulation of PI3K/GSK-3β/β-catenin pathway and iNOS inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0425-6DOI Listing

Publication Analysis

Top Keywords

folic acid
44
hippocampal slices
24
protective folic
12
acid glutamate-induced
12
folic
11
acid
10
glutamate-induced excitotoxicity
8
glutamate-induced cell
8
cell damage
8
intracellular signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!