Biallelic BRCA2 mutations in two black South African children with Fanconi anaemia.

Fam Cancer

Division of Human Genetics, National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Cnr Hospital & De Korte Street, Braamfontein, Johannesburg, 2000, South Africa.

Published: July 2017

Fanconi anaemia (FA) is a genotypically and phenotypically heterogeneous genetic condition, characterized cytogenetically by chromosomal instability and breakage secondary to impaired DNA repair mechanisms. Affected individuals typically manifest growth restriction and congenital physical abnormalities and most progress to hematological disease including bone marrow aplasia. A rare genetic subtype of FA (FA-D1) is caused by biallelic mutations in the BRCA2 gene. Affected individuals manifest severe congenital anomalies and significant pigmentary changes and are additionally at risk for early onset leukemia and certain solid organ malignancies, including Wilms tumors and brain tumors. Parents of affected individuals are obligate carriers for heterozygous BRCA2 mutations and are thus potentially at risk for adult onset cancers which fall within the hereditary breast and ovarian cancer spectrum. We present two cases of black South African patients with FA diagnosed with biallelic BRCA2 mutations and discuss the phenotypic consequences and implications for them and their families. Recognition of this severe end of the phenotypic spectrum of FA is critical in allowing for confirmation of the diagnosis as well as cascade screening and appropriate care of family members.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10689-017-9968-yDOI Listing

Publication Analysis

Top Keywords

brca2 mutations
12
biallelic brca2
8
black south
8
south african
8
fanconi anaemia
8
mutations
4
mutations black
4
african children
4
children fanconi
4
anaemia fanconi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!