One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular plaques resulting from the accumulation of beta-amyloid peptide (Aβ). To date, a definitive cure for this disease is still lacking as the currently approved drugs used are mainly symptomatic treatments. The revolutionary discovery of extracellular vesicles (EVs) has shed new light on the development of disease-modifying treatments for AD, owing to their potential in delivering the therapeutic agents to the brain. The feasibility of harnessing EVs for clinical applications is highly dependent on the donor cell, which determines the intrinsic properties of EVs. The merit of mesenchymal stem cells (MSCs) as therapeutic delivery vehicles, and the proven therapeutic effects of the EVs derived from these cells, make researchers esteem MSCs as ideal producers of EVs. Therefore, MSC-derived EVs (MSC-EVs) emerge to be an appealing therapeutic delivery approach for the treatment of AD. Here, we discuss perspectives on the therapeutic strategies using MSC-EVs to treat AD and the associated challenges in clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxx002DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
extracellular vesicles
8
alzheimer's disease
8
therapeutic delivery
8
evs
6
therapeutic
5
stem cell-derived
4
cell-derived extracellular
4
vesicles glimmer
4
glimmer hope
4

Similar Publications

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Objectives: Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine.

View Article and Find Full Text PDF

The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.

View Article and Find Full Text PDF

Bioceramic Surface Topography Regulating Immune Osteogenesis.

BME Front

January 2025

State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

This study aims to clarify the effects of bioceramic interface cues on macrophages. Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring.

View Article and Find Full Text PDF

Mechanically regulated microcarriers with stem cell loading for skin photoaging therapy.

Bioact Mater

April 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.

Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!