The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aai7685 | DOI Listing |
J Integr Plant Biol
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
Casbene and neocembrene are casbene-type macrocyclic diterpenes; their derivatives play significant roles in plant defense and have pharmaceutical applications. We had previously characterized a casbene synthase, TERPENE SYNTHASE 28 (OsTPS28), in rice (Oryza sativa). However, the mechanism of neocembrene biosynthesis in rice remained unclear.
View Article and Find Full Text PDFCell Genom
January 2025
Department of Genetics, Yale School of Medicine, New Haven, CT, USA. Electronic address:
Salivary and pancreatic amylase are encoded by AMY1 and AMY2, respectively, which are located within a single genomic locus that has undergone substantial structural variation, resulting in varying gene copy numbers across species. Using optical genome mapping and long-read sequencing, Yilmaz, Karageorgiou, Kim, et al. achieved nucleotide-level resolution of this locus across different human populations, offering new insights into how copy number variation contributes to human adaptation.
View Article and Find Full Text PDFScience
January 2025
School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
How mammalian herbivores evolve to feed on chemically defended plants remains poorly understood. In this study, we investigated the adaptation of two species of woodrats ( and ) to creosote bush (), a toxic shrub that expanded across the southwestern United States after the Last Glacial Maximum. We found that creosote-adapted woodrats have elevated gene dosage across multiple biotransformation enzyme families.
View Article and Find Full Text PDFClin Transl Med
January 2025
Unit of Molecular Biology, Georges-François Leclerc Cancer center, UNICANCER, Dijon, France.
Background: Molecular diagnosis has become highly significant for patient management in oncology.
Methods: Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.
Biochem Cell Biol
January 2025
Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Surface receptors in Gram-negative bacteria that bind and extract iron from the host glycoproteins transferrin (Tf) or lactoferrin (Lf) was discovered 35 years ago in pathogenic species and subsequently was discovered in other pathogens of humans and food production animals. These bacterial species reside exclusively on the mucosal surfaces of the respiratory or genitourinary tract of their mammalian host and rely on their host specific Tf and Lf receptors to acquire iron for survival. Since the specificity of the bacterial Tf receptors was shown to be due to selective pressures on the host Tf, their presence in bacteria that reside in both mammals and birds indicates that they arose over 320 million years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!