Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy.

Mater Sci Eng C Mater Biol Appl

Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.

Published: April 2017

Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.12.120DOI Listing

Publication Analysis

Top Keywords

corrosion resistance
12
equal channel
8
channel angular
8
angular pressing
8
lae442 magnesium
8
magnesium alloy
8
degradation behaviour
8
nacl solution
8
corrosion layer
8
subsequent ecap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!