Hydroxyapatite (HA)-coated magnetite nanoparticles (MNPs) are being widely investigated for various applications in medical engineering and wastewater treatment. In this work, the MNPs were thoroughly coated by bacterial synthesized HA nanoparticles during biomineralization process using Enterobacter aerogenes. The resulting bacterial-induced precipitate was then calcined at 600°C and investigated with respect to structural characteristics, particle size and magnetic strength by XRD, FT-IR, SEM, EDS, TEM and VSM analyses. The effects of MNPs and HA-coated MNPs (HA-MNPs) on the viability of human MCF-7 cell lines were also investigated via mitochondrial activity test (MTT) and lactate dehydrogenase (LDH) assays. The powder characterization results showed appropriate structural properties for HA-MNPs samples. The particles diameter size of the MNPs and HA-MNPs were in the range of 3-25nm and 20-80nm, respectively. The biologically-synthesized HA-MNPs formed a stable suspension in water while keeping their magnetic property. The saturation magnetization (Ms) of HA-MNPs was measured at ~10emug which was in good agreement with the structural composition of this sample. Finally, the results of the cell lines viability indicated that coating of toxic MNPs via biomineralization was a promising approach in order to synthesize bio-compatible magnetic nanoparticles with suitable physical and chemical structural characteristics. The toxicity level of MNPs was reduced by 10 fold when coated by bacterial-synthesized HA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.12.012DOI Listing

Publication Analysis

Top Keywords

magnetite nanoparticles
8
enterobacter aerogenes
8
structural characteristics
8
mnps ha-mnps
8
cell lines
8
mnps
7
ha-mnps
5
biological method
4
method in-situ
4
in-situ synthesis
4

Similar Publications

Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils.

J Hazard Mater

January 2025

Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain. Electronic address:

Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet.

View Article and Find Full Text PDF

Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.

View Article and Find Full Text PDF

The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.

View Article and Find Full Text PDF

A holistic approach for the evaluation of iron nanoparticles on maize plants and earthworms in natural soil.

Chemosphere

January 2025

Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico.

There is a debate about the implications of the effect of nanoparticles or nanomaterials on edible plants and soil organisms. Earthworms have been used to evaluate soil quality, reproduction, survival, and other biochemical parameters when organisms are exposed to nanomaterials. Most studies have been performed in laboratory settings, and little has been studied under realistic conditions, especially when earthworms and corn plants share the same natural soil and organic matter space.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!