In recent years concern about the chemical composition of wastewater generated by the oil refining industry has increased, even after its treatment. These wastewaters contain substances that can harm both the entire aquatic ecosystem and the health of any exposed organisms. The aim of this study was to evaluate the genotoxic and mutagenic potentials of the effluent generated by the largest Brazilian petroleum refinery, the effectiveness of the treatments used by the refinery, and whether its effluent can compromise the water quality of the river where it is discarded. Chromosomal aberration and micronucleus assays were performed in Allium cepa and micronucleus test in mammalian cell culture (CHO-K1). The samples were collected in three sites at the refinery: one site on the Jaguari River and two sites on the Atibaia Rivers (upstream and downstream of the discharged effluent), under three different climatic conditions. Tests with A. cepa showed increased frequencies of chromosomal aberrations and micronuclei in meristematic cells for the effluent after physico-chemical treatment, but the samples after treatment biological and stabilization pond presented none of these abnormalities. It was observed that the induced damage in the meristematic cells was not observed in the F cells of A. cepa roots. The micronucleus test performed with mammalian cell culture also indicated that the effluent, after physico-chemical treatment, induced a significant increase in micronucleus frequencies. Plant and hamster cells exposed to the other samples collected inside the refinery and in the Jaguari and Atibaia Rivers did not present evidence of genotoxicity and mutagenicity in the tests performed. This study showed that the effluent treated carried out by the refinery (biological treatment followed by a stabilization pond) proved to be efficient for the removal of the toxic load still present after the physico-chemical treatment, since no change in the quality of the Atibaia River was observed. However, because this is an industry with a high production of effluent with toxic potential, its effluents must be constantly monitored, so that there is no compromise of the water quality of the receiving river.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.01.142DOI Listing

Publication Analysis

Top Keywords

physico-chemical treatment
12
petroleum refinery
8
compromise water
8
water quality
8
micronucleus test
8
mammalian cell
8
cell culture
8
samples collected
8
atibaia rivers
8
meristematic cells
8

Similar Publications

Utility of integrated papyrus-bivalve for bioremediation of aquaculture wastewater.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Management, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.

Aquaculture generates substantial amount of residual feeds and faecal matter that accumulate in the culture environment and pollute effluent-receiving water, diminishing its ecological functioning. To devise means of treating nutrient-rich aquaculture wastewater, the efficiency of integrated papyrus-bivalve mesocosms in removing nutrients was evaluated. The mesocosms were fed on water (6600 L) from one brood-stock pond and allowed to settle for 2 weeks.

View Article and Find Full Text PDF

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.

View Article and Find Full Text PDF

In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!