SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2017.01.011DOI Listing

Publication Analysis

Top Keywords

dissociation rates
8
magnetic field
8
nuclear spins
8
nmr signal
8
experimental time
8
asymmetric complexes
8
high field
4
field hyperpolarization-exsy
4
hyperpolarization-exsy experiment
4
experiment fast
4

Similar Publications

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.

View Article and Find Full Text PDF

L-type amino acid transporter 1 (LAT1, SLC7A5), overexpressed in various cancers, mediates the uptake of essential amino acids crucial for tumor growth. It has emerged as a promising target for cancer therapy. Nanvuranlat (JPH203/KYT-0353), a LAT1 inhibitor, has shown antitumor activity in preclinical studies and efficacy in biliary tract cancer during clinical trials.

View Article and Find Full Text PDF

The assembly of proteins in membranes plays a key role in many crucial cellular pathways. Despite their importance, characterizing transmembrane assembly remains challenging for experiments and simulations. Equilibrium molecular dynamics simulations do not cover the time scales required to sample the typical transmembrane assembly.

View Article and Find Full Text PDF

Objective: Posttraumatic stress disorder (PTSD) and more complex posttraumatic symptomatology (i.e., dissociative PTSD [D-PTSD] and complex PTSD [CPTSD]) are differently described in the (5th ed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!