Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway.

J Hazard Mater

Department of Environmental Engineering, Wuhan University, Wuhan, 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China. Electronic address:

Published: May 2017

Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (OH) and sulfate radical (SO)) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of OH and/or SO through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of OH and/or SO in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.01.046DOI Listing

Publication Analysis

Top Keywords

activation peroxides
16
light irradiation
16
catalyst-free activation
12
peroxides visible
12
visible led
8
led light
8
photoexcitation pathway
8
active radicals
8
visible light
8
electron transfer
8

Similar Publications

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling.

World J Gastroenterol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.

Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.

Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.

View Article and Find Full Text PDF

The antioxidant extracts considered a very important food additive which promoting the protection of lipid and prolong the shelf life of food products. The aim of this investigation was decrease the time of extraction of hibiscus leaves extract (HLE) and olive leaves extract (OLE) from 48 h to only 6 h without reducing efficiency of these extracts. HPLC assay, scavenging radical activity by DPPH˙ (IC), inhibition lipid peroxidation by both β-Carotene/Linoleic Acid Bleaching (βCB) and Thiobarbituric Acid Reactive Substances (TBARs) assays, antibacterial and antifungal activities measured for different concentrations of ethanolic extracts by conventional extraction (CE) and difference in pressure extraction (DPE) methods, and the results shown a considerable in mean difference ( < 0.

View Article and Find Full Text PDF

Increased NOX-dependent ROS production and proportionally enhanced antioxidant response in white adipose tissue of male rats.

Arch Endocrinol Metab

January 2025

Universidade Estadual do Ceará Instituto Superior de Ciências Biomédicas Laboratório de Fisiologia Endócrina e Metabolismo FortalezaCE Brasil Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil.

Objective: This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats.

Materials And Methods: The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on HO and gene expression of NOX1, NOX2, and NOX4.

Results: The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity.

View Article and Find Full Text PDF

Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.

Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!