Intraoperative hemostasis during neurosurgical procedures is one of the most important aspects of intracranial surgery. Hemostasis is mandatory to keep a clean operative field and to prevent blood loss and postoperative hemorrhage. In neurosurgical practice, biosurgical hemostatic agents have proved to be extremely useful to complete the more classic use of electrocoagulation. During recent years, many biosurgical topical hemostatic agents were created. Although routinely used during neurosurgical procedures, there is still a great deal of confusion concerning optimal use of these products, because of the wide range of products, as absorbable topical agents, antifibrinolytics agents, fibrin sealants and hemostatic matrix, which perform their hemostatic action in different ways. The choice of the hemostatic agent and the strategy for local hemostasis are correlated with the neurosurgical approach, the source of bleeding, and the neurosurgeon's practice. In this study, the authors review all the different sources of bleeding during intracranial surgical approaches and analyze how to best choose the right topical hemostatic agent to stop bleeding, from the beginning of the surgical approach to the end of the extradural hemostasis after dural closure, along all the steps of the neurosurgical procedure.
Download full-text PDF |
Source |
---|
J Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFLung
January 2025
Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Missions Research Foundation, Puducherry, India.
Background: Hemoptysis, the expectoration of blood from the lower respiratory tract, varies in severity and necessitates effective management to mitigate morbidity. Traditional treatments include bronchial artery embolization and pharmacological approaches. Tranexamic acid (TXA), an antifibrinolytic agent known for its efficacy in reducing bleeding during surgery and trauma, is being explored for its efficacy in treating Hemoptysis via both intravenous and inhalational routes.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!