A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of the In Vitro and In Vivo efficiency of RM-532-105, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, in LAPC-4 prostate cancer cell and tumor models. | LitMetric

In the fight against androgen-sensitive prostate cancer, the enzyme 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an attractive therapeutic target considering its key role in the formation of androgenic steroids. In this study, we attempted to assess the in vivo efficacy of the compound RM-532-105, an androsterone derivative developed as an inhibitor of 17β-HSD3, in the prostate cancer model of androgen-sensitive LAPC-4 cells xenografted in nude mice. RM-532-105 did not inhibit the tumor growth induced by 4-androstene-3,17-dione (4-dione); rather, the levels of the androgens testosterone (T) and dihydrotestosterone (DHT) increased within the tumors. In plasma, however, DHT levels increased but T levels did not. In troubleshooting experiments, the non-androgenic potential of RM-532-105 was confirmed by two different assays (LAPC-4 proliferation and androgen receptor transcriptional activity assays). The enzyme 5α-reductase was also revealed to be the predominant enzyme metabolizing 4-dione in LAPC-4 cells, yielding 5α-androstane-3,17-dione and not T. Other 17β-HSDs than 17β-HSD3 seem responsible in the androgen synthesis. From experiments with LAPC-4 cells, we fortuitously came across the interesting finding that 17β-HSD3 inhibitor RM-532-105 is concentrated inside tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300232PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171871PLOS

Publication Analysis

Top Keywords

prostate cancer
12
lapc-4 cells
12
17β-hydroxysteroid dehydrogenase
8
dehydrogenase type
8
rm-532-105
5
lapc-4
5
investigation vitro
4
vitro vivo
4
vivo efficiency
4
efficiency rm-532-105
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!