Interstitial lung fibroblast activation coupled with extracellular matrix production is a pathological signature of idiopathic pulmonary fibrosis (IPF), and is governed by transforming growth factor (TGF)-β/Smad signalling. We sought to define the role of heat shock protein (HSP)90 in profibrotic responses in IPF and to determine the therapeutic effects of HSP90 inhibition in a murine model of pulmonary fibrosis.We investigated the effects of HSP90 inhibition by applying 17-AAG (17-allylamino-17-demethoxygeldanamycin) to lung fibroblasts and A549 cells and by administering 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin) to mice with bleomycin-induced pulmonary fibrosis.HSP90 expression was increased in (myo)fibroblasts from fibrotic human and mouse lungs compared with controls. 17-AAG inhibited TGF-β1-induced extracellular matrix production and transdifferentiation of lung fibroblasts and epithelial-mesenchymal transition of A549 cells. The antifibrotic effects were associated with TGF-β receptor disruption and inhibition of Smad2/3 activation. Co-immunoprecipitation revealed that HSP90β interacted with TGF-β receptor II and stabilised TGF-β receptors. Furthermore, 17-DMAG improved lung function and decreased fibrosis and matrix metalloproteinase activity in the lungs of bleomycin-challenged mice.In conclusion, this is the first study to demonstrate that HSP90 inhibition blocks pulmonary fibroblast activation and ameliorates bleomycin-induced pulmonary fibrosis in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.01941-2015DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
hsp90 inhibition
12
transforming growth
8
heat shock
8
shock protein
8
fibroblast activation
8
extracellular matrix
8
matrix production
8
effects hsp90
8
lung fibroblasts
8

Similar Publications

This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.

View Article and Find Full Text PDF

The Importance of Lung Innate Immunity During Health and Disease.

Pathogens

January 2025

Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.

The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes.

View Article and Find Full Text PDF

: Long-term lung sequelae in severe COVID-19 survivors, as well as their treatment, are poorly described in the current literature. : To investigate lung fibrotic sequelae in survivors of severe/critical COVID-19 pneumonia and their fate according to a "non-interventional" approach. : Prospective study of the above COVID-19 survivors after hospital discharge from March 2020 to October 2022.

View Article and Find Full Text PDF

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a median survival of 3-5 years. Antifibrotic therapies like pirfenidone and nintedanib slow progression, but the outcomes vary. Gender may influence disease presentation, progression, and response to treatment.

View Article and Find Full Text PDF

Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!