Predicting the role of protein is one of the most challenging problems. There are few approaches available for the prediction of role of unknown protein in terms of drug target or vaccine candidate. We propose here Naïve Bayes probabilistic classifier, a promising method for reliable predictions. This method is tested on the proteins identified in our mass spectrometry based membrane protemics study of Leishmania donovani parasite that causes a fatal disease (Visceral Leishmaniasis) in humans all around the world. Most of the vaccine/drug targets belonging to membrane proteins are represented as key players in the pathogenesis of Leishmania infection. Analyses of our previous results, using Naïve Bayes probabilistic classifier, indicate that this method predicts the role of unknown/hypothetical protein (as drug target/vaccine candidate) significantly with higher precision. We have employed this method in order to provide probabilistic predictions of unknown/hypothetical proteins as targets. This study reports the unknown/hypothetical proteins of Leishmania membrane fraction as a potential drug targets and vaccine candidate which is vital information for this parasite. Future molecular studies and characterization of these potent targets may produce a recombinant therapeutic/prophylactic tool against Visceral Leishmaniasis. These unknown/hypothetical proteins may open a vast research field to be exploited for novel treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2016.2570217 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.
View Article and Find Full Text PDFIJCAI (U S)
August 2024
Department of Computer Science, Harvard University.
The escalating prevalence of cannabis use, and associated cannabis-use disorder (CUD), poses a significant public health challenge globally. With a notably wide treatment gap, especially among emerging adults (EAs; ages 18-25), addressing cannabis use and CUD remains a pivotal objective within the 2030 United Nations Agenda for Sustainable Development Goals (SDG). In this work, we develop an online reinforcement learning (RL) algorithm called reBandit which will be utilized in a mobile health study to deliver personalized mobile health interventions aimed at reducing cannabis use among EAs.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.
View Article and Find Full Text PDFStruct Equ Modeling
May 2024
Psychology & Neuroscience and Sociology, University of North Carolina.
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, non-iterative estimator for latent variable models. Associated with this estimator are equation specific tests of model misspecification. One issue with equation specific tests is that they lack specificity, in that they indicate that some instruments are problematic without revealing which specific ones.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
Background: The 313-variant polygenic risk score (PRS) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS across different European populations which could influence risk estimation has not been performed.
Methods: We explored the distribution of PRS across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!