Biodegradable mesoporous delivery system for biomineralization precursors.

Int J Nanomedicine

Department of Endodontics, College of Dental Medicine, Augusta University, Augusta, GA, USA.

Published: April 2017

Scaffold supplements such as nanoparticles, components of the extracellular matrix, or growth factors have been incorporated in conventional scaffold materials to produce smart scaffolds for tissue engineering of damaged hard tissues. Due to increasing concerns on the clinical side effects of using large doses of recombinant bone-morphogenetic protein-2 in bone surgery, it is desirable to develop an alternative nanoscale scaffold supplement that is not only osteoinductive, but is also multifunctional in that it can perform other significant bone regenerative roles apart from stimulation of osteogenic differentiation. Because both amorphous calcium phosphate (ACP) and silica are osteoinductive, a biodegradable, nonfunctionalized, expanded-pore mesoporous silica nanoparticle carrier was developed for loading, storage, and sustained release of a novel, biosilicification-inspired, polyamine-stabilized liquid precursor phase of ACP for collagen biomineralization and for release of orthosilicic acid, both of which are conducive to bone growth. Positively charged poly(allylamine)-stabilized ACP (PAH-ACP) could be effectively loaded and released from nonfunctionalized expanded-pore mesoporous silica nanoparticles (pMSN). The PAH-ACP released from loaded pMSN still retained its ability to infiltrate and mineralize collagen fibrils. Complete degradation of pMSN occurred following unloading of their PAH-ACP cargo. Because PAH-ACP loaded pMSN possesses relatively low cytotoxicity to human bone marrow-derived mesenchymal stem cells, these nanoparticles may be blended with any osteoconductive scaffold with macro- and microporosities as a versatile scaffold supplement to enhance bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279816PMC
http://dx.doi.org/10.2147/IJN.S128792DOI Listing

Publication Analysis

Top Keywords

scaffold supplement
8
nonfunctionalized expanded-pore
8
expanded-pore mesoporous
8
mesoporous silica
8
loaded pmsn
8
scaffold
5
bone
5
biodegradable mesoporous
4
mesoporous delivery
4
delivery system
4

Similar Publications

Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge.

View Article and Find Full Text PDF

Serum markers for beef meat quality: Potential media supplement for cell-cultured meat production.

Curr Res Food Sci

December 2024

Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

As the global population continues to grow and food demands increase, the food industry faces mounting pressure to develop innovative solutions. Cell-cultured meat involves cultivating cells from live animals through self-renewal methods or scaffolding and presents a promising alternative to traditional meat production by generating nutritionally rich biomass. However, significant research is still needed to overcome challenges such as developing serum-free media, identifying suitable additives to support cell growth, and ensuring the quality of cell-cultured meat closely resembles that of traditional meat.

View Article and Find Full Text PDF

Development and application of a cGPS 20K liquid-phase SNP microarray in Jiaji ducks.

Poult Sci

December 2024

Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China. Electronic address:

In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS.

View Article and Find Full Text PDF

Limb Salvage via Surgical Soft-tissue Reconstruction With Ovine Forestomach Matrix Grafts: A Prospective Study.

Plast Reconstr Surg Glob Open

December 2024

From the Department of Surgery, Associates in Medicine and Surgery, Fort Myers, FL.

Background: Complex and chronic lower extremity defects present a surgical challenge and can progress to eventual amputation if closure is not achieved. In addition to morbidity and mortality, these defects have a significant impact on patient quality of life and represent a substantial cost burden to the healthcare system. Ovine forestomach matrix (OFM) grafts are an advanced tissue scaffold option to supplement the surgical reconstruction ladder and may augment limb preservation in cases of complex lower extremity defects.

View Article and Find Full Text PDF

Neutrophil membrane vesicles (NMVs) have been successfully applied to control the inflammatory cascade after spinal cord injury (SCI) by acting as an inflammatory factor decoy to front-load the overall inflammation regulatory window; however, the mechanisms by which NMVs regulate macrophage phenotypic shifts as well as their outcomes have rarely been reported. In this study, we demonstrated the "efferocytosis-like" effect of NMVs endocytosed by macrophages, supplementing the TCA cycle intermediate metabolite α-KG by promoting glutamine metabolism, which in turn facilitates oxidative phosphorylation and inhibits the NF-κB signaling pathway to reprogram inflammatory macrophages to the pro-regenerative phenotype. Based on these findings, a "Trojan horse" composite fiber scaffold was constructed; this comprised a carboxylated poly-l-lactic acid shell encapsulated with NMVs and a core loaded with brain-derived neurotrophic factor to spatiotemporally modulate the inflammatory microenvironment by 39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!