Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386450 | PMC |
http://dx.doi.org/10.1038/cddis.2016.353 | DOI Listing |
J Cell Biol
April 2025
University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied.
View Article and Find Full Text PDFSAR QSAR Environ Res
January 2025
Department of Biotechnology, National Institute of Technology, Durgapur, India.
Protein arginylation mediated by arginyltransferase 1 is a crucial regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with other macromolecules. This enzyme and its targets are of immense interest for modulating cellular processes in diseased states like obesity and cancer. Despite being an important target molecule, no highly potent drug against this enzyme exists.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway. Electronic address:
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China.
The N-end rule pathway is a protein degradation pathway mediated by the ubiquitin-proteasome system, which specifically targets and degrades target proteins by recognizing specific residues at the N-terminus of the proteins. The residues which play a crucial role in the N-end rule pathway are called degrons, also known as N-degrons, as they are usually unstable at the N-terminal end of the protein. Currently, several N-end rule pathways have been identified in the eukaryotes, including the Arg/N-end rule, Ac/N-end rule, and Pro/N-end rule pathways, as well as the recently discovered Gly/N-end rule pathway.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!