The phenomenon of recovering the permanent shape from a severely deformed temporary shape, but only in the presence of the right stimulus, is known as the shape memory effect (SME). Materials with such an interesting effect are known as shape memory materials (SMMs). Typical stimuli to trigger shape recovery include temperature (heating or cooling), chemical (including water/moisture and pH value), and light. As a SMM is able not only to maintain the temporary shape but also to respond to the right stimulus when it is applied, via shape-shifting, a seamless integration of sensing and actuation functions is achieved within one single piece of material. Hydrogels are defined by their ability to absorb a large amount of water (from 10-20% up to thousands of times their dry weight), which results in significant swelling. On the other hand, dry hydrogels indeed belong to polymers, so they exhibit heat- and chemoresponsive SMEs as most polymers do. While heat-responsive SMEs have been spotted in a handful of wet hydrogels, so far, most dry hydrogels evince the heat and water (moisture)-responsive SMEs. Since water is one of the major components in living biological systems, water-responsive SMMs hold great potential for various implantable applications, including wound healing, intravascular devices, soft tissue reconstruction, and controlled drug delivery. This provides motivation to combine water-activated SMEs and swelling in hydrogels together to enhance the performance. In many applications, such as vascular occlusion via minimally invasive surgery for liver cancer treatment, the operation time (for both start and finish) is required to be well controlled. Due to the gradual and slow manner of water absorption for water-activated SMEs and swelling in hydrogels, even a combination of both effects encounters many difficulties to meet the timerequirements in real procedures of vascular occlusion. Recently, we have reported a bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. The plug consists of a composite with a poly(dl-lactide-co-glycolide) (PLGA) core (loaded with radiopaque filler) and cross-linked poly(ethylene glycol) (PEG) hydrogel outer layer. The device can be activated by body fluid (or water) after about 2 min of immersion in water. The whole occlusion process is completed within a few dozens of seconds. The underlying mechanism is water-responsive shape recovery induced buckling, which occurs in an expeditious manner within a short time period and does not require complete hydration of the whole hydrogel. In this paper, we experimentally and analytically investigate the water-activated shape recovery induced buckling in this biodegradable PEG hydrogel to understand the fundamentals in precisely controlling the buckling time. The molecular mechanism responsible for the water-induced SME in PEG hydrogel is also elucidated. The original diameter and amount of prestretching are identified as two influential parameters to tailor the buckling time between 1 and 4 min as confirmed by both experiments and simulation. The phenomenon reported here, chemically induced buckling via a combination of the SME and swelling, is generic, and the study reported here should be applicable to other water- and non-water-responsive gels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.6b00539DOI Listing

Publication Analysis

Top Keywords

shape recovery
16
induced buckling
16
peg hydrogel
16
water-responsive shape
12
recovery induced
12
shape memory
12
vascular occlusion
12
shape
9
buckling biodegradable
8
polyethylene glycol
8

Similar Publications

Article Synopsis
  • Researchers propose a new method for creating multiple shape memory polymers (SMPs) by mixing immiscible polymers under high pressure and shear, rather than traditional blending techniques.
  • This approach allows for nanoscale homogeneity (40-95 nm) in the blends, improving both shape memory and mechanical performance.
  • The study focused on a blend of polypropylene (PP) and polystyrene (PS), demonstrating that the processed blend achieves a strong triple shape memory effect with high shape fixation and recoverability, along with adjustable transition temperatures.
View Article and Find Full Text PDF

Preparation of crosslinked lignin-polyacrylamide hydrogel with high resistance to temperature and salinity.

Int J Biol Macromol

January 2025

Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China. Electronic address:

In this study, we innovatively prepared a multifunctional lignin crosslinked polyacrylamide (L-cPAM) hydrogel by a sequential two-step strategy of crosslinking of lignin and crosslinked polyacrylamide (cPAM) followed by the polymerization of cPAM. The hydrogen bonding and crosslinking between the molecular chains of lignin and PAM established a rigid and porous network structure, which provided the L-cPAM hydrogel with excellent mechanical strength, thermal stability, and salinity resistance. A series of lignin dosages (0 to 30 %) were investigated during the crosslinking of lignin and PAM.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Complete expiratory central airway collapse at general anesthesia recovery: a case report.

J Int Med Res

January 2025

Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Expiratory central airway collapse is a degenerative tracheobronchial disease that is often overlooked because of its nonspecific clinical features. A man was admitted for evaluation of tracheal nodules. Following bronchoscopic biopsy, a significant increase in airway pressure occurred during anesthesia recovery.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!