A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO(110). | LitMetric

A catalyst functions by stabilizing reaction intermediates, usually through surface adsorption. In the oxygen evolution reaction (OER), surface oxygen adsorption plays an indispensable role in the electrocatalysis. The relationship between the adsorption energetics and OER kinetics, however, has not yet been experimentally measured. Herein we report an experimental relationship between the adsorption of surface oxygen and the kinetics of the OER on IrO(110) epitaxially grown on a TiO(110) single crystal. The high quality of the IrO film grown using molecular-beam epitaxy affords the ability to extract the surface oxygen adsorption and its impact on the OER. By examining a series of electrolytes, we find that the adsorption energy changes linearly with pH, which we attribute to the electrified interfacial water. We support this hypothesis by showing that an electrolyte salt modification can lead to an adsorption energy shift. The dependence of the adsorption energy on pH has implications for the OER kinetics, but it is not the only factor; the dependence of the OER electrocatalysis on pH stipulates two OER mechanisms, one operating in acidic solution and another operating in alkaline solution. Our work points to the subtle adsorption-kinetics relationship in the OER and highlights the importance of the interfacial electrified interaction in electrocatalyst design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b11932DOI Listing

Publication Analysis

Top Keywords

surface oxygen
12
adsorption energy
12
adsorption
9
surface adsorption
8
adsorption oxygen
8
oxygen evolution
8
evolution reaction
8
oer
8
oxygen adsorption
8
relationship adsorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!