Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation.

Biol Trace Elem Res

Department of Biochemistry, Kakatiya University, Warangal, Telangana, 506009, India.

Published: September 2017

Zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. The objective of this study was to investigate the expression profile of zinc regulated transporter like- and iron-regulated transporter-like proteins (ZIPs) and zinc transporter proteins (ZnTs) in cardiomyocytes and their modulation in response to hypoxia and reoxygenation. Adult rat ventricular myocytes (ARVMs) were subjected to 6 h of hypoxia, followed by 18 h of reoxygenation. Intracellular and extracellular zinc concentrations were determined using Fluozin-3 and Newport Green fluorescence, respectively. Expression of ZnTs 1, 2, 5, and 9 along with ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14 was detectable in the cardiomyocytes by real-time reverse transcriptase polymerase chain reaction. Hypoxia elicited accumulation of intracellular free zinc, but subsequent reoxygenation resulted in striking loss of intracellular free zinc and decreased the cardiomyocyte viability. Concomitantly, extracellular zinc levels dropped rapidly during hypoxia, but increased after reoxygenation. Immunoblotting analysis revealed that hypoxia increased the expression of ZnT1, but reoxygenation significantly increased the expression of ZnTs 2 and 5. Neither hypoxia nor reoxygenation altered the levels of ZnT9. Increased intracellular zinc at the end of hypoxia is related to enhanced expression of ZIPs, whereas decreased intracellular zinc during reoxygenation appears to be due to lowered expression of all ZIPs, in addition to elevated levels of ZnTs 2 and 5. These results thus suggest that there is impaired accumulation of intracellular zinc during reoxygenation, due to overexpression of specific ZnTs and downregulation of ZIP expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-017-0957-7DOI Listing

Publication Analysis

Top Keywords

intracellular zinc
12
zinc
11
zinc dyshomeostasis
8
reoxygenation
8
hypoxia reoxygenation
8
extracellular zinc
8
expression znts
8
accumulation intracellular
8
intracellular free
8
free zinc
8

Similar Publications

Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia. Electronic address:

Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Interferon (IFN)-γ is a central regulator of cell-mediated immunity in human health and disease, but reduced expression of the target receptors impairs signaling activity and leads to immunotherapy resistance. Although intracellular expression of IFN-γ restores the signaling and downstream functions, we lack the tools to activate the gene instead of cell surface receptors. This paper introduces the design and characterization of an artificial transcription factor (ATF) protein that recognizes the gene with six zinc finger domains, which are dovetailed to a VP64 signaling domain that promotes gene transcription and translation.

View Article and Find Full Text PDF

Prostate cancer, the second leading cause of cancer-related mortality in men, exhibits distinct metabolic reprogramming involving zinc and citrate metabolism. This study investigated whether targeting this unique metabolic profile could offer an effective therapeutic approach. A series of novel oxindole derivatives were synthesized and evaluated for their inhibitory effects on transcription factors (TFs) and antiproliferative activity across various cancer cell lines.

View Article and Find Full Text PDF

ZnT35C Maintains Zinc Homeostasis to Regulate Spermatogenesis in Drosophila Testis.

Arch Insect Biochem Physiol

January 2025

College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Zinc homeostasis contributes significantly to numerous physiological processes. Drosophila ZnT35C protein, a zinc transporter encoded by CG3994, is chiefly located on the cell membrane and facilitates the transport of zinc from the cytoplasm to the extracellular space to sustain zinc homeostasis within the organism. Previous studies about ZnT35C have involved diverse structures such as the Malpighian tubules, adult brain, and sensory nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!