A rare Mechanical prosthetic valve dysfunction.

Med Ultrason

State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National center for Cardiovascular Diseases, Chinese Academy of Medical Sciences And Peking Union Medical College. Beijing, 100037, People's Republic of China.

Published: January 2017

A rare case of mechanical prosthetic valve dysfunction in mitral position. The mechanical valve opened once every two cardiac cycles. We also found the opening time of the mechanical valve in aortic positions was long and short alternately because of the Left ventricular volume changed every cardiac cycles.

Download full-text PDF

Source
http://dx.doi.org/10.11152/mu-907DOI Listing

Publication Analysis

Top Keywords

mechanical prosthetic
8
prosthetic valve
8
valve dysfunction
8
mechanical valve
8
cardiac cycles
8
rare mechanical
4
valve
4
dysfunction a rare
4
a rare case
4
case mechanical
4

Similar Publications

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

Aortic valve leaflet assessment to inform novel bioinspired materials: Understanding the impact of collagen fibres on the tissue's mechanical behaviour.

J Mech Behav Biomed Mater

December 2024

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:

Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.

View Article and Find Full Text PDF

Highly Responsive Robotic Prosthetic Hand Control Considering Electrodynamic Delay.

Sensors (Basel)

December 2024

Department of Robotics and Mechatronics, Tokyo Denki University, Tokyo 120-8551, Japan.

As robots become increasingly integrated into human society, the importance of human-machine interfaces continues to grow. This study proposes a faster and more accurate control system for myoelectric prostheses by considering the Electromechanical Delay (EMD), a key characteristic of Electromyography (EMG) signals. Previous studies have focused on systems designed for wrist movements without attempting implementation.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!