Aspects of spatial cognition, specifically spatial skills, are strongly correlated with interest and success in STEM courses and STEM-related professions. Because growth in STEM-related industries is expected to continue for the foreseeable future, it is important to develop evidence-based and theoretically grounded methods and interventions that can help train relevant spatial skills. In this article, we discuss research showing that aspects of spatial cognition are embodied and how these findings and theoretical developments can be used to influence the design of tangible and embodied interfaces (TEIs). TEIs seek to bring interaction with digital content off the screen and into the physical environment. By incorporating physical movement and tangible feedback in digital systems, TEIs can leverage the relationship between the body and spatial cognition to engage, support, or improve spatial skills. We use this knowledge to define a design space for TEIs that engage spatial cognition and illustrate how TEIs that are designed and evaluated from a spatial cognition perspective can expand the design space in ways that contribute to the fields of cognitive science and human computer interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256454 | PMC |
http://dx.doi.org/10.1186/s41235-016-0032-5 | DOI Listing |
Psychon Bull Rev
January 2025
Department of Business and Information Science, Japan International University, Tsukuba, Japan.
Previous research has suggested that numerosity estimation and counting are closely related to distributed and focused attention, respectively (Chong & Evans, WIREs Cognitive Science, 2(6), 634-638, 2011). Given the critical role of color in guiding attention, this study investigated its effects on numerosity processing by manipulating both color variety (single color, medium variety, high variety) and spatial arrangement (clustered, random). Results from the estimation task revealed that high color variety led to a perceptual bias towards larger quantities, regardless of whether colors were clustered or randomly arranged.
View Article and Find Full Text PDFSci Rep
January 2025
NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, Verona, Italy.
The Economy of action hypothesis postulates that bodily states rescale the perception of the individual's environment's spatial layout. The estimation of distances and slopes in navigation space (i.e.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.
View Article and Find Full Text PDFAging Dis
December 2024
Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.
Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!