Entanglement Entropy of Black Holes.

Living Rev Relativ

Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours Fédération Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours, France.

Published: October 2011

AI Article Synopsis

Article Abstract

The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5255889PMC
http://dx.doi.org/10.12942/lrr-2011-8DOI Listing

Publication Analysis

Top Keywords

entanglement entropy
28
black holes
8
entropy
8
entanglement
7
entropy black
4
holes entanglement
4
entropy fundamental
4
fundamental quantity
4
quantity characterizes
4
characterizes correlations
4

Similar Publications

Error mitigation in brainbox quantum autoencoders.

Sci Rep

January 2025

Peter Grünberg Institute (PGI-2), Forschungszentrum Jülich, 52428, Jülich, Germany.

Quantum hardware faces noise challenges that disrupt multiqubit entangled states. Quantum autoencoder circuits with a single qubit bottleneck have demonstrated the capability to correct errors in noisy entangled states. By introducing slightly more complex structures in the bottleneck, referred to as brainboxes, the denoising process can occure more quickly and efficiently in the presence of stronger noise channels.

View Article and Find Full Text PDF

Entanglement and quantum discord in the cavity QED models.

Heliyon

January 2025

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Vorobyovy Gory 1, Moscow, 119991, Russia.

We investigate the quantum correlation between light and matter in bipartite quantum systems, drawing on the Jaynes-Cummings model and the Tavis-Cummings model, which are well-established in cavity quantum electrodynamics. Through the resolution of the quantum master equation, we can derive the dissipative dynamics in open systems. To assess the extent of quantum correlation, several measures are introduced: von Neumann entropy, concurrence and quantum discord.

View Article and Find Full Text PDF

Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment.

Entropy (Basel)

December 2024

Information Science and Technology College, Dalian Maritime University, Dalian 116026, China.

In this paper, by using eleven entangled quantum states as a quantum channel, we propose a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor David, who provides a guarantee for communication security. This protocol is based on GHZ state measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the communication task. The analysis demonstrates that the success probability of the proposed protocol can reach 100%.

View Article and Find Full Text PDF

W-Class States-Identification and Quantification of Bell-CHSH Inequalities' Violation.

Entropy (Basel)

December 2024

Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic.

We discuss a family of W-class states describing three-qubit systems. For such systems, we analyze the relations between the entanglement measures and the nonlocality parameter for a two-mode mixed state related to the two-qubit subsystem. We find the conditions determining the boundary values of the negativity, parameterized by concurrence, for violating the Bell-CHSH inequality.

View Article and Find Full Text PDF

Understanding the flow, loss, and recovery of the information between a system and its environment is essential for advancing quantum technologies. The central spin system serves as a useful model for a single qubit, offering valuable insights into how quantum systems can be manipulated and protected from decoherence. This work uses the stimulated echo experiment to track the information flow between the central spin and its environment, providing a direct measure of the sensitivity of system/environment correlations to environmental dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!