White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. (), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that elicits in bats is not yet fully understood; antibodies are produced in response to infection by , but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of inoculation on the survival and gene expression of captive hibernating with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes (, , , and ) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti- titres, although anti- antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of and was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310603PMC
http://dx.doi.org/10.1098/rspb.2016.2232DOI Listing

Publication Analysis

Top Keywords

immune responses
8
white-nose syndrome
8
immune response
8
gene expression
8
lymph nodes
8
uninfected bats
8
bats
7
immune
4
responses hibernating
4
hibernating brown
4

Similar Publications

Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.

Materials And Methods:  This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.

View Article and Find Full Text PDF

Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.

Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.

View Article and Find Full Text PDF

ZmDREB1A controls plant immunity via regulating salicylic acid metabolism in maize.

Plant J

January 2025

National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.

DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!