A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with C- and C-labelled aniline.

J Pharm Biomed Anal

Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore; Singapore Institute for Clinical Sciences (SICS), Brenner Centre for Molecular Medicine, 30 Medical Drive, 117609, Singapore. Electronic address:

Published: May 2017

A novel liquid chromatography tandem mass spectrometry (LCMSMS) method for the quantitative measurement of gut microbial-derived short-chain fatty acids (SCFAs) in human infant stool has been developed and validated. Baseline chromatographic resolution was achieved for 12 SCFAs (acetic, butyric, caproic, 2,2-dimethylbutyric, 2-ethylbutyric, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic, pivalic and valeric acids) within an analysis time of 15min. A novel sequential derivatization of endogenous and spiked SCFAs in stool via C- and C-aniline respectively, facilitated the accurate quantitation of C-aniline derivatized endogenous SCFAs based on calibration of exogenously C-derivatized SCFAs. Optimized quenching of derivatization agents prior to LCMSMS analysis further reduced to negligible levels the confounding chromatographic peak due to in-line derivatization of unquenched aniline with residual acetic acid present within the LCMS system. The effect of residual acetic acid, a common LCMS modifier, in analysis of SCFAs has not been addressed in previous SCFA assays. For the first time, a total of 9 SCFAs (acetic, butyric, caproic, isobutyric, isovaleric, 2-methylbutyric, 4-methylvaleric, propionic and valeric acids) were detected and quantitated in 107 healthy infant stool samples. The abundance and diversity of SCFAs in infant stool vary temporally from 3 weeks onwards and stabilize towards the end of 12 months. This in turn reflects the maturation of infant SCFA-producing gut microbiota community. In summary, this novel method is applicable to future studies that investigate the biological roles of SCFAs in paediatric health and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.01.044DOI Listing

Publication Analysis

Top Keywords

infant stool
12
scfas
9
lcmsms method
8
method quantitative
8
quantitative measurement
8
short-chain fatty
8
fatty acids
8
scfas acetic
8
acetic butyric
8
butyric caproic
8

Similar Publications

Background: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting with diarrhea to health facilities.

Methods: LDD was defined as a diarrhea episode lasting ≥ 7 days.

View Article and Find Full Text PDF

The relationship between the early life gastrointestinal microbiome and childhood nocturnal cough.

J Allergy Clin Immunol

January 2025

Department of Public Health Sciences, Henry Ford Health, Detroit, MI; Center for Bioinformatics, Henry Ford Health, Detroit, MI. Electronic address:

Background: Nocturnal cough affects approximately 1 in 3 children, can negatively impact child health, and is often attributable to asthma. The association of the gut microbiome with nocturnal cough has not been investigated.

Objective: To investigate the association between early-life gut microbiome composition and nocturnal cough overall and in the context of asthma.

View Article and Find Full Text PDF

Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.

View Article and Find Full Text PDF

Enteropathogens are major contributors to mortality and morbidity, particularly in settings with limited access to water, sanitation, and hygiene infrastructure. To assess transmission pathways associated with enteropathogen infection, we measured household environmental conditions and assayed 22 enteropathogens using TaqMan Array Cards in stool samples from 276 six-month-old children living in communities along a rural-urban gradient in Northern Ecuador. We utilized multivariable models, risk factor importance, and distance-based statistical methods to test factors associated with infection.

View Article and Find Full Text PDF

SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients.

Virol J

January 2025

Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.

Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.

Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!