Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

Environ Sci Technol

Woodrow Wilson School of Public and International Affairs, Robertson Hall, Princeton University, Princeton, New Jersey 08544, United States.

Published: March 2017

To increase energy security and reduce emissions of air pollutants and CO from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP and GWP). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP. To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP. We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b04072DOI Listing

Publication Analysis

Top Keywords

shale gas
28
methane leakage
12
switching coal
8
coal shale
8
gas
8
estimate lifecycle
8
ghg emissions
8
power residential
8
residential industrial
8
industrial sectors
8

Similar Publications

Observation-based verification of regional/national methane (CH) emission trends is crucial for transparent monitoring and mitigation strategy planning. Although surface observations track the global and sub-hemispheric emission trends well, their sparse spatial coverage limits our ability to assess regional trends. Dense satellite observations complement surface observations, offering a valuable means to validate emission trends, especially in regions where emissions changes are substantial but debated.

View Article and Find Full Text PDF

Directed Inward Migration of S-Vacancy in BiS QDs for Selective Photocatalytic CO to CHOH.

Adv Sci (Weinh)

January 2025

College of Materials Science and Engineering, National and Local Joint Engineering Research Center for Green Processing, Technology of Agricultural and Forestry Biomass, Central South University of Forestry and Technology, Changsha, 410004, China.

The directional migration of S-vacancy is beneficial to the separation of photogenerated carriers and the transition of electrons in semiconductors. In this study, Bi/BiS@carboxylic-cellulose (CC) photocatalyst with bionic chloroplast structure is obtained by electron beam irradiation to induce S-vacancy in BiS@CC. The results of CO photoreduction experiments demonstrate that the reduction rate of CO to CHOH by Bi/BiS@CC-450 samples is 10.

View Article and Find Full Text PDF

Due to the remoteness of rural areas, the impact of environmental pollution on residents' health has not received adequate attention. This study examined the relationship between coal consumption and residents' health status in rural areas in China between 2005 and 2021. We explored the impact of air pollution caused by coal combustion on the health of rural residents in China and provided associated countermeasures.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Synthesis of three-dimensional covalent organic frameworks through a symmetry reduction strategy.

Nat Chem

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.

Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!