Background: Bipolar affective disorder (BPD) is a severe mood disorder with a prevalence of ∼1.5% in the population. The pathogenesis of BPD is poorly understood; however, a strong heritable component has been identified. Previous genome-wide association studies have indicated a region on 6q25, coding for the SYNE1 gene, which increases disease susceptibility. SYNE1 encodes the synaptic nuclear envelope protein-1, nesprin-1. A brain-specific splice variant of SYNE1, CPG2 encoding candidate plasticity gene 2, has been identified. The intronic single-nucleotide polymorphism with the strongest genome-wide significant association in BPD, rs9371601, is present in both SYNE1 and CPG2.
Methods: We screened 937 BPD samples for genetic variation in SYNE1 exons 14-33, which covers the CPG2 region, using high-resolution melt analysis. In addition, we screened two regions of increased transcriptional activity, one of them proposed to be the CPG2 promoter region.
Results And Conclusion: We identified six nonsynonymous and six synonymous variants. We genotyped three rare nonsynonymous variants, rs374866393, rs148346599 and rs200629713, in a total of 1099 BPD samples and 1056 controls. Burden analysis of these rare variants did not show a significant association with BPD. However, nine patients are compound heterozygotes for variants in SYNE1/CPG2, suggesting that rare coding variants may contribute significantly towards the complex genetic architecture underlying BPD. Imputation analysis in our own whole-genome sequencing sample of 99 BPD individuals identified an additional eight risk variants in the CPG2 region of SYNE1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407451 | PMC |
http://dx.doi.org/10.1097/YPG.0000000000000166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!