Entry, infection, replication, and egress of human polyomaviruses: an update.

Can J Microbiol

Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India.

Published: March 2017

Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjm-2016-0519DOI Listing

Publication Analysis

Top Keywords

host cell
8
viral infection
8
pyvs
5
host
5
entry infection
4
infection replication
4
replication egress
4
egress human
4
human polyomaviruses
4
polyomaviruses update
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!