It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so-called basic multicellular units (BMUs), which are local teams of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation as a functional continuum. It was based on the position of specific cell markers in longitudinal sections of Haversian BMUs generating new canals through human long bones. It showed that initial resorption at the tip of the canal is followed by a period where newly recruited reversal/osteoprogenitor cells and osteoclasts alternate, thus revealing the existence of a mixed "reversal-resorption" phase. Three-dimensional reconstructions obtained from serial sections indicated that initial resorption is mainly involved in elongating the canal and the additional resorption events in widening it. Canal diameter measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal/resorption surface. These observations strongly suggest that bone formation is initiated only above a threshold cell density, that the length of the reversal/resorption period depends on how fast osteoprogenitor recruitment reaches this threshold, and thus that the slower the rate of osteoprogenitor recruitment, the more bone is degraded. They lead to a model where the newly recognized reversal/resorption phase plays a central role in the mechanism linking osteoprogenitor recruitment and the resorption-formation switch. © 2017 American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3091DOI Listing

Publication Analysis

Top Keywords

bone formation
12
osteoprogenitor recruitment
12
resorption
8
resorption formation
8
haversian bmus
8
initial resorption
8
length reversal/resorption
8
formation
6
bone
6
coupling bone
4

Similar Publications

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of the presence of the "cortex sign" (corticalization) in femoral diaphysis fractures determined by the dynamization of nails because of delayed union. The study included 12 patients with a closed transverse femoral fracture (AO 32a3) treated with dynamization (all the screws distal of the nail were removed) because of delayed healing and followed up for at least 2 years. These patients were evaluated for the presence of bone union, cortex-like sclerosis (corticalization) distal to the nail, and the distance of the corticalization from the joint during follow- up after dynamization.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Objective: The expanding field of hematopoietic cell transplantation (HCT) for non-malignant diseases, including those amenable to gene therapy or gene editing, faces challenges due to limited donor availability and the toxicity associated with cell collection methods. Umbilical cord blood (CB) represents a readily accessible source of hematopoietic stem and progenitor cells (HSPCs); however, the cell dose obtainable from a single cord blood unit is frequently insufficient. This limitation can be addressed by enhancing the potency of HSPCs, specifically their capacity to reconstitute hematopoiesis.

View Article and Find Full Text PDF

Bioceramic Surface Topography Regulating Immune Osteogenesis.

BME Front

January 2025

State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

This study aims to clarify the effects of bioceramic interface cues on macrophages. Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!