Magnetic hard gap due to bound magnetic polarons in the localized regime.

Sci Rep

Department of Physics &Astronomy, University of Wyoming, Laramie, Wyoming 82071, USA.

Published: February 2017

We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297244PMC
http://dx.doi.org/10.1038/srep42224DOI Listing

Publication Analysis

Top Keywords

hard gap
12
bound magnetic
12
magnetic polarons
12
magnetic
7
magnetic hard
4
gap
4
gap bound
4
polarons localized
4
localized regime
4
regime investigate
4

Similar Publications

Background/purpose: High gold (Au) alloys have many advantages, such as good mechanical properties and stable chemical properties for dental restoration. The purpose of this investigation was to investigate the effect of zirconia (ZrO)-magnesia (MgO)-based investment combined with an argon arc vacuum pressure (Ar-arc VP) casting process on the recasting of high Au alloys.

Materials And Methods: The recasting Au alloys were compared between the control group of conventional SiO-based investment/horizontal centrifugal (HC) casting and the experimental group of ZrO-MgO-based investment/Ar-arc VP die casting.

View Article and Find Full Text PDF

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

In this work, we present the green synthesis of complex - derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10 to 7 × 10 Pa.

View Article and Find Full Text PDF

The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay.

View Article and Find Full Text PDF

Researchers are actively looking for novel anticancer medications because cancer is one of the leading causes of mortality worldwide. A fascinating area of study in medicinal chemistry is the screening of antioxidants for novel anticancer medicines, as antioxidants have lately been used as therapeutic candidates to combat a variety of ailments in aerobic species. Additionally, pyrazole-based heterocycle synthesis is a productive approach to the drug development process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!