Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones.

Plant Reprod

Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, s/n - Prédio do CCS - Instituto de Biologia, 2° andar, sala A2-93, Rio de Janeiro, RJ, 219410-970, Brazil.

Published: March 2017

AI Article Synopsis

Article Abstract

Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00497-017-0297-yDOI Listing

Publication Analysis

Top Keywords

reproductive development
12
plant hormones
12
fruit development
12
ghmads3 ghmads4
12
cotton
8
members cotton
8
development response
8
expression
8
flower fruit
8
development cotton
8

Similar Publications

Mechanisms of Homoarginine: Looking Beyond Clinical Outcomes.

Acta Physiol (Oxf)

February 2025

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.

View Article and Find Full Text PDF

A successful mitosis-to-meiosis transition in germ cells is essential for fertility in sexually reproducing organisms. In mice and humans, it is established that expression of STRA8 is critical for meiotic onset in both sexes. Here we show that BMP signalling is also essential, not for STRA8 induction but for correct meiotic progression in female mouse fetal germ cells.

View Article and Find Full Text PDF

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!