Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories. One primary factor constraining memory capacity is the sparsity of the engram, the proportion of neurons that encode a single experience. Investigating sparsity in humans is hampered by the lack of single-cell resolution and differences in behavioral protocols. Sparsity can be quantified in freely moving rodents, but extrapolating these data to humans assumes that information storage is comparable across species and is robust to restraint-induced reduction in sensory input. Here, we test these assumptions and show that species differences in brain size build memory capacity without altering the structure of the data being stored. Furthermore, sparsity in most of the hippocampus is resilient to reduced sensory information. This information is vital to integrating animal data with human imaging navigation studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354327PMC
http://dx.doi.org/10.1523/JNEUROSCI.3057-16.2017DOI Listing

Publication Analysis

Top Keywords

storage species
8
episodic memories
8
navigation studies
8
nonhuman primates
8
reduced sensory
8
sensory input
8
memory capacity
8
memory
5
storage
5
sparsity
5

Similar Publications

Allometric equations for estimating above and belowground biomass of Colophospermum mopane in Mozambique.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.

Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.

View Article and Find Full Text PDF

Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.

View Article and Find Full Text PDF

Bimetallic synergy in non-precious metal Mn/Ba-SSZ-13 zeolite for improving NO storage capacity at low temperatures.

J Hazard Mater

January 2025

Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:

Pd-zeolite is considered one of the most promising passive NO adsorber (PNA) materials for NO purification in diesel vehicles during cold start. Nevertheless, the scarcity and high cost of the precious metal Pd restrict the industrialisation of Pd-zeolites as PNA. This work developed a bimetallic Mn and Ba co-modified SSZ-13 as non-precious metal PNA material.

View Article and Find Full Text PDF

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!