The effects of warming on autumnal growth cessation and bud formation in trees remain ambiguous due to contrasting observations between a range of studies under controlled conditions and field experiments. High night temperature has been reported to advance growth cessation and bud formation in several tree species grown under controlled conditions. On the other hand, some recent field experiments have shown that autumn warming delays bud formation, although the temperature parameters that could account for this effect have not been identified. In addition, dioecious species have been shown to respond differently to environmental change, and differential warming effects on the sexes have received limited attention, even more so in relation to phenology. In a data set including three separate field experiments employing either experimental warming or an elevational gradient, we tested the effect of different temperature parameters on apical, vegetative bud formation and transitions between bud stages in female and male clones of Eurasian aspen (Populus tremula). Increased temperature was found to delay bud formation, and this process was best explained by maximum daily temperature. Males were significantly delayed compared with females in forming green closed buds, a process best explained by mean 24 h temperature. Bud maturation was best explained by mean daytime temperature, and buds matured significantly faster in males than in females, possibly explaining why females and males did not differ in terms of overall bud formation. In conclusion, our data show that delayed bud formation in Eurasian aspen during autumn can be attributed to the effect of high temperature, and this effect is in contrast to most of the evidence from studies of bud development in controlled environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpw089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!