The ins and outs of cyclic di-GMP signaling in Vibrio cholerae.

Curr Opin Microbiol

Department of Microbiology and Environmental Toxicology, University of Santa Cruz, Santa Cruz, CA, USA. Electronic address:

Published: April 2017

The second messenger nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP) governs many cellular processes in the facultative human pathogen Vibrio cholerae. This organism copes with changing environmental conditions in aquatic environments and during transitions to and from human hosts. Modulation of c-di-GMP allows V. cholerae to shift between motile and sessile stages of life, thus allowing adaptation to stressors and environmental conditions during its transmission cycle. The V. cholerae genome encodes a large set of proteins predicted to degrade and produce c-di-GMP. A subset of these enzymes has been demonstrated to control cellular processes - particularly motility, biofilm formation, and virulence - through transcriptional, post-transcriptional, and translational mechanisms. Recent studies have identified and characterized enzymes that modulate or sense c-di-GMP levels and have led towards mechanistic understanding of c-di-GMP regulatory circuits in V. cholerae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534393PMC
http://dx.doi.org/10.1016/j.mib.2017.01.002DOI Listing

Publication Analysis

Top Keywords

vibrio cholerae
8
cellular processes
8
environmental conditions
8
cholerae
5
c-di-gmp
5
ins outs
4
outs cyclic
4
cyclic di-gmp
4
di-gmp signaling
4
signaling vibrio
4

Similar Publications

Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.

View Article and Find Full Text PDF

Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.

View Article and Find Full Text PDF

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

This research delves into the evolving dynamics of antibiogram trends, the diversity of antibiotic resistance genes and antibiotic efficacy against Vibrio cholerae strains that triggered the cholera outbreak 2022 in Odisha, India. The study will provide valuable insights managing antimicrobial resistance during cholera outbreaks. Eighty V.

View Article and Find Full Text PDF

Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae.

Nat Commun

January 2025

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!